Exercises

*| WordSpelling

WordPronunciation

«enumeration»
GrammarType

. RelatedWord
Dictionary ’
J]
Synonym .]
Word)
Antonym :
%
1 ER——
® %
WordMeaning GrammarType

noun
verb
adjective
adverb

Figure E4.8 Partial model for words in a dictionary

89

5
State Modeling

You can best understand a system by first examining its static structure—that is, the structure
of its objects and their relationships to each other at a single moment in time (the class mod-
el). Then you should examine changes to the objects and their relationships over time (the
state model). The state model describes the sequences of operations that occur in response
to external stimuli, as opposed to what the operations do, what they operate on, or how they
are implemented.

The state model consists of multiple state diagrams. one for each class with temporal
behavior that is important to an application. The state diagram is a standard computer science
concept (a graphical representation of finite state machines) that relates events and states.
Events represent external stimuli and states represent values of objects. You should master
the material in this chapter before proceeding in the book.

5.1 Events

An event is an occurrence at a point in time, such as user depresses left button or flight 123
departs from Chicago. Events often correspond to verbs in the past tense (power turned on,
alarm set) or to the onset of some condition (paper tray becomes empty, temperature be-
comes lower than freezing). By definition, an event happens instantaneously with regard to
the time scale of an application. Of course, nothing is really instantaneous; an event is simply
an occurrence that an application considers atomic and fleeting. The time at which an event
occurs is an implicit attribute of the event. Temporal phenomena that occur over an interval
of time are properly modeled with a state.

One event may logically precede or follow another, or the two events may be unrelated.
Flight 123 must depart Chicago before it can arrive in San Francisco; the two events are caus-
ally related. Flight 123 may depart before or after flight 456 departs Rome; the two events
are causally unrelated. Two events that are causally unrelated are said to be concurrent; they

90

51 Events 91

have no effect on each other. If the communications delay between two locations exceeds the
difference in event times, then the events must be concurrent because they cannot influence
each other. Even if the physical locations of two events are not distant, we consider the events
concurrent if they do not affect each other. In modeling a system we do not try to establish
an ordering between concurrent events because they can occur in any order.

Events include error conditions as well as normal occurrences. For example, motor
Jjammed, transaction aborted, and timeout are typical error events. There is nothing different
about an error event; only our interpretation makes it an “‘error.”

The term event is often used ambiguously. Sometimes it refers to an instance, at other
times to a class. In practice, this ambiguity is usually not a problem and the precise meaning
is apparent from the context. If necessary, you can say event occurrence or event type to be
precise.

There are several kinds of events. The most common are the signal event, the change
event, and the time event.

5.1.1 Signal Event

A signal is an explicit one-way transmission of information from one object to another. It is
different from a subroutine call that returns a value. An object sending a signal to another
object may expect a reply, but the reply is a separate signal under the control of the second
object, which may or may not choose to send it.

A signal event is the event of sending or receiving a signal. Usually we are more con-
cerned about the receipt of a signal, because it causes effects in the receiving object. Note
the difference between signal and signal event—a signal is a message between objects while
a signal event is an occurrence in time.

Every signal transmission is a unique occurrence, but we group them into signal classes
and give each signal class a name to indicate common structure and behavior. For example,
UA flight 123 departs from Chicago on January 10, 1991 is an instance of signal class Flight-
Departure. Some signals are simple occurrences, but most signal classes have attributes in-
dicating the values they convey. For example, as Figure 5.1 shows, FlightDeparture has
attributes airline, flightNumber, ciry, and date. The UML notation is the keyword signal in
guillemets («») above the signal class name in the top section of a box. The second section
lists the signal attributes.

«signal» «gignal» «signal» «signal»
FlightDeparture MouseButtonPushed StringEntered ReceiverlL.ifted
airline button text
flightNumber location -
city «signal»
date DigitDialed
digit

Figure 5.1 Signal classes and attributes. A signal is an explicit one-way
transmission of information from one object to another.

92 Chapter 5 / State Modeling

5.1.2 Change Event

A change event is an event that is caused by the satisfaction of a boolean expression. The
intent of a change event is that the expression is continually tested—whenever the expression
changes from false to true, the event happens. Of course, an implementation would not con-
tinuously check a change event, but it must check often enough so that it seems continuous
from an application perspective.

The UML notation for a change event is the keyword when followed by a parenthesized
boolean expression. Figure 5.2 shows several examples of change events.

B when (room temperature < heating set point)
m when (room temperature > cooling set point)
m when (battery power < lower limit)
B when (tire pressure < minimum pressure)

Figure 5.2 Change events. A change event is an event that is caused by the
satisfaction of a boolean expression.

5.1.3 Time Event

A fime event is an event caused by the occurrence of an absolute time or the elapse of a time
interval. As Figure 5.3 shows, the UML notation for an absolute time is the keyword when
followed by a parenthesized expression involving time. The notation for a time interval is the
keyword after followed by a parenthesized expression that evaluates to a time duration.

B when (date = January 1, 2000)
B after (10 seconds)

Figure 5.3 Time events. A time event is an event caused by the occurrence of
an absolute time or the elapse of a time interval.

5.2 States

A state is an abstraction of the values and links of an object. Sets of values and links are
grouped together into a state according to the gross behavior of objects. For example, the
state of a bank is either solvent or insolvent, depending on whether its assets exceed its lia-
bilities. States often correspond to verbs with a suffix of “ing” (Waiting, Dialing) or the du-
ration of some condition (Powered, BelowFreezing).

Figure 5.4 shows the UML notation for a state—a rounded box containing an optional
state name. Our convention is to list the state name in boldface, center the name near the top
of the box, and capitalize the first letter.

5.2 States 93

<Solvent> <Insolvent> (Waiting) (Dialing) CPowered) (BelowFreezing)

Figure 5.4 States. A state is an abstraction of the values and links of an object.

In defining states, we ignore attributes that do not affect the behavior of the object, and
lump together in a single state all combinations of values and links with the same response
to events. Of course, every attribute has some effect on behavior or it would be meaningless,
but often some attributes do not affect the sequence of control and you can regard them as
simple parameter values within a state. Recall that the purpose of modeling is to focus on
qualities that are relevant to the solution of an application problem and abstract away those
that are irrelevant. The three UML models (class, state, and interaction) present different
views of a system for which the particular choice of attributes and values are not equally im-
portant. For example, except for leading Os and 1s, the exact digits dialed do not affect the
control of the phone line, so we can summarize them all with state Dialing and track the
phone number as a parameter Sometimes, all possible values of an attribute are important,
but usually only when the number of possible values is small.

The objects in a class have a finite number of possible states—one or possibly some larg-
er number. Each object can only be in one state at a time. Objects may parade through one
or more states during their lifetime. At a given moment of time, the various objects for a class
can exist in a multitude of states.

A state specifies the response of an object to input events. All events are ignored in a
state, except those for which behavior is explicitly prescribed. The response may include the
invocation of behavior or a change of state. For example, if a digit is dialed in state Dial tone,
the phone line drops the dial tone and enters state Dialing; if the receiver is replaced in state
Dial tone, the phone line goes dead and enters state Idle.

There is a certain symmetry between events and states as Figure 5.5 illustrates. Events
represent points in time; states represent intervals of time. A state corresponds to the interval
between two events received by an object. For example, after the receiver is lifted and before
the first digit is dialed, the phone line is in state Dial tone. The state of an object depends on
past events, which in most cases are eventually hidden by subsequent events. For example,
events that happened before the phone is hung up do not affect future behavior; the Idle state
“forgets” events received prior to the receipt of the hang up signal.

power turned on power turned off power turned on
| ; ; > time
\v/_.., . v;,_ S—
Powered Not powered

Figure 5.5 Event vs. state. Events represent points in time; states represent
intervals of time.

Both events and states depend on the level of abstraction. For example, a travel agent
planning an itinerary would treat each segment of a journey as a single event; a flight status

94 Chapter 5 / State Modeling

board in an airport would distinguish departures and arrivals; an air traffic control system
would break each flight into many geographical legs.

You can characterize a state in various ways. as Figure 5.6 shows for the state Alarm
ringing on a watch. The state has a suggestive name and a natural-language description of its
purpose. The event sequence that leads to the state consists of setting the alarm, doing any-
thing that doesn’t clear the alarm, and then having the target time occur. A declarative con-
dition for the state is given in terms of parameters, such as current and target time; the alarm
stops ringing after 20 seconds. Finally, a stimulus-response table shows the effect of events
current time and button pushed, including the response that occurs and the next state. The
different descriptions of a state may overlap.

State: AlarmRinging
Description: alarm on watch is ringing to indicate target time
Event sequence that produces the state:
setAlarm (targetTime)
any sequence not including clearAlarn
when (currentTime = targetTime)
Condition that characterizes the state:

alarm = on, alarm set to targetTime, targetTime < currentTime <
targetTime + 20 seconds, and no button has been pushed since targetTime

Events accepted in the state:

event response next state
when (currentTime = targetTime + 20) resetAlarm normal
buttonPushed (any button) resetAlarm normal

Figure 5.6 Various characterizations of a state. A state specifies the
response of an object to input events.

Can links have state? In as much as they can be considered objects, links can have state.
As a practical matter, it is generally sufficient to associate state only with objects.

5.3 Transitions and Conditions

A transition is an instantaneous change from one state to another. For example, when a
called phone is answered, the phone line transitions from the Ringing state to the Connected
state. The transition is said to fire upon the change from the source state to the target state.
The origin and target of a transition usually are different states, but may be the same. A tran-
sition fires when its event occurs (unless an optional guard condition causes the event to be
ignored). The choice of next state depends on both the original state and the event received.

5.4 State Diagrams 95

An event may cause multiple objects to transition; from a conceptual point of view such tran-
sitions occur concurrently.

A guard condition is a boolean expression that must be true in order for a transition to
occur. For example, a traffic light at an intersection may change only if a road has cars wait-
ing. A guarded transition fires when its event occurs, but only if the guard condition is true.
For example, “when you go out in the morning (event), if the temperature is below freezing
(condition), then put on your gloves (next state).” A guard condition is checked only once,
at the time the event occurs, and the transition fires if the condition is true. If the condition
becomes true later, the transition does not then fire. Note that a guard condition is different
from a change event—a guard condition is checked only once while a change event is, in ef-
fect, checked continuously.

Figure 5.7 shows guarded transitions for traffic lights at an intersection. One pair of elec-
tric eyes checks the north-south left turn lanes; another pair checks the east-west turn lanes.
If no car is in the north-south and/or east-west turn lanes, then the traffic light control logic
is smart enough to skip the left turn portion of the cycle.

timeout [cars in N/S left lanes]
=7 North/south
may turn left

North/south
may go straight

timeout [no cars
in N/S left lanes]

timeout timeout

timeout [no cars

in E/W left lanes]
East/west
may turn left

timeout [cars in E/W left lanes}

East/west
may go straigh

Figure 5.7 Guarded transitions. A transition is an instantaneous change
from one state to another. A guard condition is a boolean ex-
pression that must be true in order for a transition to occur.

The UML notation for a transition is a line from the origin state to the target state. An
arrowhead points to the target state. The line may consist of several line segments. An event
may label the transition and be followed by an optional guard condition in square brackets.
By convention, we usually confine line segments to a rectilinear grid. We italicize the event
name and show the condition in normal font.

5.4 State Diagrams

A state diagram is a graph whose nodes are states and whose directed arcs are transitions
between states. A state diagram specifies the state sequences caused by event sequences.
State names must be unique within the scope of a state diagram. All objects in a class execute
the state diagram for that class, which models their common behavior. You can implement

96 Chapter 5 / State Modeling

state diagrams by direct interpretation or by converting the semantics into equivalent pro-
gramming code.

The state model consists of multiple state diagrams, one state diagram for each class
with important temporal behavior. The state diagrams must match on their interfaces—
events and guard conditions. The individual state diagrams interact by passing events and
through the side effects of guard conditions. Some events and guard conditions appear in a
single state diagram; others appear in multiple state diagrams for the purpose of coordina-
tion. This chapter covers only individual state diagrams; Chapter 6 discusses state models of
interacting diagrams.

A class with more than one state has important temporal behavior. Similarly, a class is
temporally important if it has a single state with multiple responses to events. You can rep-
resent state diagrams with a single state in a simple nongraphical form—a stimulus—response
table listing events and guard conditions and the ensuing behavior.

5.4.1 Sample State Diagram

Figure 5.8 shows a state diagram for a telephone line. The diagram concerns a phone line and
not the caller nor callee. The diagram contains sequences associated with normal calls as
well as some abnormal sequences, such as timing out while dialing or getting busy lines. The
UML notation for a state diagram is a rectangle with its name in a small pentagonal tag in
the upper left corner. The constituent states and transitions lie within the rectangle.

At the start of a call, the telephone line is idle. When the phone is removed from the
hook, it emits a dial tone and can accept the dialing of digits. Upon entry of a valid number,
the phone system tries to connect the call and route it to the proper destination. The connec-
tion can fail if the number or trunk are busy. If the connection is successful, the called phone
begins ringing. If the called party answers the phone, a conversation can occur. When the
called party hangs up, the phone disconnects and reverts to idle when put on hook again.

Note that the receipt of the signal onHook causes a transition from any state to /dle (the
bundle of transitions leading to /dle). Chapter 6 will show a more general notation that rep-
resents events applicable to groups of states with a single transition.

States do not totally define all values of an object. For example, state Dialing includes
all sequences of incomplete phone numbers. It is not necessary to distinguish between dif-
ferent numbers as separate states, since they all have the same behavior, but the actual num-
ber dialed must of course be saved as an attribute.

If more than one transition leaves a state, then the first event to occur causes the corre-
sponding transition to fire. If an event occurs and no transition matches it, then the event is
ignored. If more than one transition matches an event, only one transition will fire, but the
choice is nondeterministic.

5.4.2 One-shot State Diagrams

State diagrams can represent continuous loops or one-shot life cycles. The diagram for the
phone line is a continuous loop. In describing ordinary usage of the phone, we do not know
or care how the loop is started. (If we were describing installation of new lines, the initial
state would be important.)

5.4 State Diagrams

97

PhonelLine

onHook / idle N onHook
offHook
DialTone
.
timeout
digit(n)
- timeout
digit(n)

(‘/\ numberBusy
<—{ BusyTone

Fast
BusyTone

trunkBusy

NG
{ Connected

N
{ Disconnected (<

Dialing

validNumber

{ Connecting)

routed

ging)

calledPhoneAnswers

calledPhoneHangsUp

Warning

__—_/ invalidNumber

messageDone

Recorded
Message

Figure 5.8 State diagram for a telephone line. A state diagram specifies
the state sequences caused by event sequences.

One-shot state diagrams represent objects with finite lives and have initial and final
states. The initial state is entered on creation of an object; entry of the final state implies de-
struction of the object. Figure 5.9 shows a simplified life cycle of a chess game with a default
initial state (solid circle) and a default final state (bull’s eye).

As an alternate notation, you can indicate initial and final states via entry and exit points.
In Figure 5.10 the start entry point leads to white’s first turn, and the chess game eventually
ends with one of three possible outcomes. Entry points (hollow circles) and exit points (cir-
cles enclosing an “x”) appear on the state diagram’s perimeter and may be named.

98 Chapter 5 / State Modeling

Chess

o—— White’s turn

checkmate

black white stalemate

moves| moves Sta/e%

Blamheckmate

Figure 5.9 State diagram for chess game. One-shot diagrams represent
objects with finite lives.

Chess)
. ™\ Ccheckmate .
White’s turn X Black wins
i /s fe =
Start d black white stalemate Draw
moves| moves stalemate >
e

(Black’s turn j———) White wins

Figure 5.10 State diagram for chess game. You can also show one-shot
diagrams by using entry and exit points.

5.4.3 Summary of Basic State Diagram Notation
Figure 5.11 summarizes the basic UML syntax for state diagrams.

State diagram name)

State1 event (attribs) [condition] / effect /~ State2
do / activity .

event/ effect

Figure 5.11 Summary of basic notation for state diagrams.

B State. Drawn as a rounded box containing an optional name. A special notation is avail-
able for initial states (a solid circle) and final states (a bull’s-eye or encircled “x”).

5.5 State Diagram Behavior 99

B Transition. Drawn as a line from the origin state to the target state. An arrowhead points
to the target state. The line may consist of several line segments.

B Event. A signal event is shown as a label on a transition and may be followed by paren-
thesized attributes. A change event is shown with the keyword when followed by a pa-
renthesized boolean expression. A time event is shown with the keyword when followed
by a parenthesized expression involving time or the keyword after followed by a paren-
thesized expression that evaluates to a time duration.

B State diagram. Enclosed in a rectangular frame with the diagram name in a small pen-
tagonal tag in the upper left corner.

B Guard condition. Optionally listed in square brackets after an event.

B Effects (to be explained in next section). Can be attached to a transition or state and are
listed after a slash (*/”). Multiple effects are separated with a comma and are performed
concurrently. (You can create intervening states if you want multiple effects to be per-
formed in sequence.)

We also recommend some style conventions. We list the state name in boldface with the first

letter capitalized. We italicize event names with the initial letter in lower case. Guard condi-

tions and effects are in normal font and also have the initial letter in lower case. We try to
confine transition line segments to a rectilinear grid.

5.5 State Diagram Behavior

State diagrams would be of little use if they just described events. A full description of an
object must specify what the object does in response to events.

5.5.1 Activity Effects

An effect is a reference to a behavior that is executed in response to an event. An activity is
the actual behavior that can be invoked by any number of effects. For example, disconnect-
PhoneLine might be an activity that is executed in response to an onHook event for Figure
5.8. An activity may be performed upon a transition, upon the entry to or exit from a state,
or upon some other event within a state.

Activities can also represent internal control operations, such as setting attributes or gen-
erating other events. Such activities have no real-world counterparts but instead are mecha-
nisms for structuring control within an implementation. For example, a program might
increment an internal counter every time a particular event occurs.

The notation for an activity is a slash (*/”) and the name (or description) of the activity,
following the event that causes it. The keyword do is reserved for indicating an ongoing ac-
tivity (to be explained) and may not be used as an event name. Figure 5. 12 shows the state
diagram for a pop-up menu on a workstation.When the right button is depressed, the menu
is displayed: when the right button is released, the menu is erased. While the menu is visible,
the highlighted menu item is updated whenever the cursor moves.

100 Chapter 5 / State Modeling

right button down / display pop-up menu
idle] ~| Menu visible
right button up / erase pop-up menu

cursor moved / highlight menu item

Figure 5.12 Activities for pop-up menu. An activity is behavior that can be
executed in response to an event.

5.5.2 Do-Activities

A do-activity is an activity that continues for an extended time. By definition, a do-activity
can only occur within a state and cannot be attached to a transition. For example, the warning
light may flash during the Paper jam state for a copy machine (Figure 5.13). Do-activities
include continuous operations, such as displaying a picture on a television screen, as well as
sequential operations that terminate by themselves after an interval of time, such as closing

a valve.
Paper jam w
do /flash warning light

Figure 5.13 Do-activity for a copy machine. A do-activity is an activity
that continues for an extended time.

The notation “do /* denotes a do-activity that may be performed for all or part of the
duration that an object is in a state. A do-activity may be interrupted by an event that is re-
ceived during its execution: such an event may or may not cause a transition out of the state
containing the do-activity. For example, a robot moving a part may encounter resistance,
causing it to cease moving.

5.5.3 Entry and Exit Activities

As an alternative to showing activities on transitions, you can bind activities to entry or to
exit from a state. There is no difference in expressive power between the two notations, but
frequently all transitions into a state perform the same activity, in which case it is more con-
cise to attach the activity to the state.

For example, Figure 5.14 shows the control of a garage door opener. The user generates
depress events with a pushbutton to open and close the door. Each event reverses the direc-
tion of the door, but for safety the door must open fully before it can be closed. The control
generates motor up and motor down activities for the motor. The motor generates door open
and door closed events when the motion has been completed. Both transitions entering state
Opening cause the door to open.

5.5 State Diagram Behavior 101

depress / motor up door open / motor off

Closed depress / motor up

door closed / motor oft depress / motor down

Closing

Figure 5.14 Activities on transitions. An activity may be bound to an
event that causes a transition.

Figure 5.15 shows the same model using activities on entry to states. An entry activity
is shown inside the state box following the keyword entry and a “/” character. Whenever the
state is entered, by any incoming transition, the entry activity is performed. An entry activity
is equivalent to attaching the activity to every incoming transition. If an incoming transition
already has an activity, its activity is performed first.

Opening

depress entry / motor up

door open

Open
entry / motor off

Closed
entry / motor off

depress

door closed Closing depress

entry / motor down

Figure 5.15 Activities on entry to states. An activity may also be bound
to an event that occurs within a state.

Exit activities are less common than entry activities, but they are occasionally useful. An
exit activity is shown inside the state box following the keyword exit and a “/” character.
Whenever the state is exited, by any outgoing transition, the exit activity is performed first.

If a state has multiple activities, they are performed in the following order: activities on
the incoming transition, entry activities, do-activities, exit activities, activities on the outgo-
ing transition. Events that cause transitions out of the state can interrupt do-activities. If a do-
activity is interrupted, the exit activity is still performed.

In general, any event can occur within a state and cause an activity to be performed. En-
try and exit are only two examples of events that can occur. As Figure 5.1 6 shows, there is a
difference between an event within a state and a self-transition; only the self-transition caus-
es the entry and exit activities to be executed.

102 Chapter 5 / State Modeling

Closed

shutdown / motor off Menu visible

cursor moved / highlight menu item

YT YT
Event within a state Self-transition

Figure 5.16 Event within a state vs. self-transition. A self-transition causes entry
and exit activities to be executed. An event within a state does not.

5.5.4 Completion Transition

Often the sole purpose of a state is to perform a sequential activity. When the activity is com-
pleted, a transition to another state fires. An arrow without an event name indicates an auto-
matic transition that fires when the activity associated with the source state is completed.
Such unlabeled transitions are called completion transitions because they are triggered by
the completion of activity in the source state.

A guard condition is tested only once, when the event occurs. If a state has one or more
completion transitions, but none of the guard conditions are satisfied, then the state remains
active and may become “stuck”-—the completion event does not occur a second time, there-
fore no completion transition will fire later to change the state. If a state has completion tran-
sitions leaving it, normally the guard conditions should cover every possible outcome. You
can use the special condition else to apply if all the other conditions are false. Do not use a
guard condition on a completion transition to model waiting for a change of value. Instead
model the waiting as a change event.

5.5.5 Sending Signals

An object can perform the activity of sending a signal to another object. A system of objects
interacts by exchanging signals. '

The activity “send targer.S(attributes)” sends signal S with the given attributes to the
target object or objects. For example, the phone line sends a connect(phone number) signal
to the switcher when a complete phone number has been dialed. A signal can be directed at
a set of objects or a single object. If the target is a set of objects, each of them receives a sep-
arate copy of the signal concurrently, and each of them independently processes the signal
and determines whether to fire a transition. If the signal is always directed to the same object,
the diagram can omit the target (but it must be supplied eventually in an implementation, of
course).

If an object can receive signals from more than one object, the order in which concurrent
signals are received may affect the final state; this is called a race condition. For example,
in Figure 5.15 the door may or may not remain open if the button is pressed at about the time
the door becomes fully open. A race condition is not necessarily a design error. but concur-

5.6 Practical Tips 103

rent systems frequently contain unwanted race conditions that must be avoided by careful
design. A requirement of two signals being received simultaneously is never a meaningful
condition in the real world, as slight variations in transmission speed are inherent in any dis-
tributed system.

5.5.6 Sample State Diagram with Activities
Figure 5.17 adds activities to the state diagram from Figure 5.8.

5.6 Practical Tips

The precise content of all models depends on application needs. The chapter has already
mentioned the following practical tips, and we summarize them here for your convenience.

B Abstracting values into states. Consider only relevant attributes when defining a state.
State diagrams need not use all attributes shown in a class model. (Section 5.2)

B Parameters. Parameterize events for incidental data that do not affect the flow of con-
trol. (Section 5.2)

B Granularity of events and states. Consider application needs when deciding on the
granularity of events and states. (Section 5.2)

B When to use state diagrams. Construct state diagrams only for classes with meaningful
temporal behavior. A class has important temporal behavior if it responds differently to
various events or has more than one state. Not all classes require a state diagram. (Sec-
tion 5.4)

B Entry and exit activities. When a state has multiple incoming transitions, and all tran-
sitions cause the same activity to occur, use an entry activity within the state rather than
repeatedly listing the activity on transition arcs. Do likewise for exi activities. (Section
5.5.3)

B Guard conditions. Be careful with guard conditions so that an object does not become
“stuck™ in a state. (Section 5.5.4)

B Race conditions. Beware of unwanted race conditions in state diagrams. Race condi-
tions may occur when a state can accept events from more than one object. (Section
5.5.5)

5.7 Chapter Summary

Event and state are the two elementary concepts in state modeling. An event is an occurrence
at a point in time. A state is an abstraction of the values and links of an object. Events repre-
sent points in time: states represent intervals of time. An object may respond to certain events
when it is in certain states. All events are ignored in a state, except those for which behavior
is explicitly prescribed. The same event can have different effects (or no effect) in different
states.

104

Chapter 5/ State Modeling

PhonelLine]

onHook / disconnectLine

onHook / disconnectlLine

{ Idle }

digit(n)

timeout

digit(n)

timeout

Dialing

BusyTone numberBusy validNumber
do / stowBusyTone
Connecting >
do /findConnection
FastBusyTone
trunkBusy routed
messageDone
/ Ringing
do /ringBell

N
offHook "
Timeout
N do / soundLoudBeep
/ DialTone
do /soundDialTone

Warning
do / playMessage

Recorded
Message

calledPhoneAnswers / connectLine

5.

nected

calledPhoneHangsUp / disconnectLine

]

Disconnected)

|ttt/

Figure 5.17 State diagram for phone line with activities. State diagrams let
you express what objects do in response to events.

There are several kinds of events, such as a signal event, a change event, and a time
event. A signal event is the sending or receipt of information communicated among objects.
A change event is an event that is caused by the satisfaction of a boolean expression. A time
event is an event caused by the occurrence of an absolute time or the elapse of a relative time.

Bibliographic Notes 105

A transition is an instantaneous change from one state to another and is caused by the
occurrence of an event. An optional guard condition can cause the event to be ignored. A
guard condition is a boolean expression that must be true in order for a transition to occur.

An effect is a reference to a behavior that is executed by objects in response to an event.
An activity is the actual behavior that can be invoked by any number of effects. An activity
may be performed upon a transition or upon an event within a state. A do-activity is an in-
terruptible behavior that continues for an extended time. Consequently, a do-activity can oc-
cur only within a state and cannot be attached to a transition. '

A state diagram is a graph whose nodes are states and whose directed arcs are transitions
between states. A state diagram specifies the possible states, what transitions are allowed be-
tween states, what events cause the transitions to occur, and what behavior is executed in
response to events. A state diagram describes the common behavior for the objects in a class;
as each object has its own values and links, so too each object has its own state or position
in the state diagram. The state model consists of multiple state diagrams, one state diagram
for each class with important temporal behavior. The state diagrams must match on their in-
terfaces—events and guard conditions.

activity do-activity race condition state model
change event effect signal ' time event
completion transition event signal event transition
concurrency fire (a transition) state

control guard condition state diagram

Figure 5.18 Key concepts for Chapter 5

Bibliographic Notes

[Wieringa-98] has a thorough comparison of various ways for specifying software, including
specification of the dynamic behavior of systems.

Finite state machines are a basic computer science concept and are described in any
standard text on automata theory, such as [Hopcroft-01]. They are often described as recog-
nizers or generators of formal languages. Basic finite state machines have limited expressive
power. They have been extended with local variables and recursion as Augmented Transition
Networks [Woods-70] and Recursive Transition Networks. These extensions expand the
range of formal languages they can express but do little to address the combinatorial explo-
sion that makes them unwieldy for practical control problems. (Chapter 6 addresses this.)

Traditional finite automata have been approached from a synchronous viewpoint. Petri
nets [Reisig-92] formalize concurrency and synchronization of systems with distributed ac-
tivity without resort to any notion of global time. Although they succeed well as an abstract
conceptual model, they are too low-level and inexpressive to be useful for specifying large
systems.

106 Chapter 5 / State Modeling

The need to specify interactive user interfaces has created several techniques for speci-
fying control. This work is directed toward finding notations that clearly express powerful
Kinds of interactions while also being easily implementable. See [Green-86] for a compari-
son of some of these techniques.

The first edition of this book distinguished between actions (instantaneous behavior)
and activities (lengthy behavior). UML2 has redefined both of these terms, and we have
modified our explanation accordingly. UML2 now defines an activity as a specification of
executable behavior and an action as a predefined primitive activity. In effect, the new defi-
nition of activity in UML2 subsumes the action and activity of the old book.

References

[Green-86] Mark Green. A survey of three dialogue models. ACM Transactions on Graphics 5, 3 (July
1986), 244-275.

[Hopcroft-01] J.E. Hopcroft, Rejeev Motwani, and J.D. Ullman. Introduction to Automata Theor,
Languages, and Computation., Second Edition, Boston: Addison-Wesley, 2001.

[Reisig-92]. Wolfgang Reisig. A Primer in Petri Net Design. New York: Springer-Verlag, 1992.

[Wieringa-98] Roel Wieringa. A survey of structured and object-oriented software specification meth-
ods and techniques. ACM Computing Surveys 30, 4 (December 1998), 459-527.

[Woods-70] W.A. Woods. Transition network grammars for natural language analysis. Communica-
tions of ACM 13, 10 (October 1970), 591-606.

Exercises

5.1 (6) An extension ladder has a rope. pulley, and latch for raising. lowering, and locking the ex-
tension. When the latch is locked, the extension is mechanically supported and you may safely
climb the ladder. To release the latch, you raise the extension slightly with the rope. You may
then freely raise or lower the extension. The latch produces a clacking sound as it passes over
rungs of the ladder. The latch may be reengaged while raising the extension by reversing direc-
tion just as the latch is passing a rung. Prepare a state diagram of an extension ladder.

5.2 (4) A simple digital watch has a display and two buttons to set it, the A button and the B button.
The watch has two modes of operation, display time and set time. In the display time mode. the
watch displays hours and minutes, separated by a flashing colon.

The set time mode has two submodes, set hours and set minutes. The A button selects modes.
Each time it is pressed, the mode advances in the sequence: display, set hours, set minutes, dis-
play, etc. Within the submodes, the B button advances the hours or minutes once each time it is
pressed. Buttons must be released before they can generate another event. Prepare a state dia-
gram of the watch.

5.3 (4) Figure E5.1 is a partially completed and simplified state diagram for the control of a tele-
phone answering machine. The machine detects an incoming call on the first ring and answers
the call with a prerecorded announcement. When the announcement is complete, the machine
records the caller’s message. When the caller hangs up, the machine hangs up and shuts off.
Place the following in the diagram: call detected, answer call, play announcement, record mes-
sage, caller hangs up, announcement complete.

Exercises 107

5.4

5.6

AnsweringMachine)

(g)~ secorany

Figure ES5.1 Partial state diagram for an answering machine

(7) The telephone answering machine in the previous exercise activates on the first ring. Revise
the state diagram so that the machine answers after five rings. If someone answers the telephone
before five rings, the machine should do nothing. Be careful to distinguish between five calls in
which the telephone is answered on the first ring and one call that rings five times.

(3) In a personal computer, a disk controller is typically used to transfer a stream of bytes from
a floppy disk drive to a memory buffer with the help of a host such as the central processing unit
(CPU) or a direct memory access (DMA) controller. Figure E5.2 shows a partially completed
and simplified state diagram for the control of the data transfer.

The controller signals the host each time a new byte is available. The data must then be read
and stored before another byte is ready. When the disk controller senses the data has been read,
it indicates that data is not available, in preparation for the next byte. If any byte is not read be-
fore the next one comes along, the disk controller asserts a data lost error signal until the disk
controller is reset. Add the following to the diagram: reset, indicate data not available, indicate
data available, data read by host, new data ready, indicate data lost.

DataTransferProtocol)

H@ata not available)~ (Data available }——

{ Data Iost\

Figure E5.2 Partially completed state diagram of a data transfer protocol

(5) Figure E5.3 is a partially completed state diagram for one kind of motor control that is com-
monly used in household appliances. A separate appliance control determines when the motor
should be on and continuously asserts on as an input to the motor control when the motor should
be running.

When on is asserted, the motor control should start and run the motor. The motor starts by
applying power to both the start and the run windings. A sensor, called a starting relay, deter-
mines when the motor has started, at which point the start winding is turned off, leaving only
the run winding powered. Both windings are shut off when on is not asserted.

Appliance motors could be damaged by overheating it they are overloaded or fail to start. To
protect against thermal damage. the motor control often includes an over-temperature sensor. If

108

58

5.9

5.10

Chapter 5 / State Modeling

MotorControl I
Off Starting w

“{ Too hot

Figure E5.3 Partially completed state diagram for a motor control

the motor becomes too hot, the motor control removes power from both windings and ignores
any on assertion until a reset button is pressed and the motor has cooled off.

Add the following to the diagram. Activities: apply power to run winding, apply power to
start winding. Events: motor is overheated, on is asserted, on is no longer asserted, motor is run-
ning. reset. Condition: motor is not overheated.

(6) There was a single. continuously active input to the control in Exercise 5.6. In another com-
mon motor control, there are two pushbuttons, one for srart and one for stop. To start the motor,
the user presses the szart button. The motor continues to run after the start button is released.To
stop the motor, the user presses the s7op button. The stop button takes precedence over the start
button, so that the motor does not run while both buttons are pressed.

If both buttons are pressed and released, whether or not the motor starts depends on the order
in which the buttons are released. If the stop button is released first, the motor starts. Otherwise
the motor does not start. Modify the state diagram that you prepared in Exercise 5.6 to accom-
modate start and stop buttons.

(5) Prepare a state diagram for selecting and dragging objects with the diagram editor described
in Exercise 4.2.

A cursor on the diagram tracks a two-button mouse. If the left button is pressed with the cur-
sor on an object (a box or a line), the object is selected, replacing any previously selected object.
If the left button is pressed with the cursor not on an object, the selection is set to null. Moving
the mouse with the left button held down drags any selected object.

(6) Extend the diagram editor from Exercise 5.8. If the user left clicks on an object and holds
the shift key, the object is added to the selection. Moving the mouse with the left button held
down drags any selected objects.

(5) Figure E5.4 shows a state diagram for a copy machine. Initially the copy machine is off.
When power is turned on, the machine reverts to a default state—one copy, automatic contrast,
and normal size. While the machine is warming, it flashes the ready light. When the machine
completes internal testing, the ready light stops flashing and remains on. Then the machine is
ready for copying.

The operator may change any of the parameters when the machine is ready. The operator
may increment or decrement the number of copies, change the size, toggle between automatic
and manual contrast, and change the contrast when auto contrast is disabled. When the param-
eters are properly set, the operator pushes the start button to begin making copies. Ordinarily,
copying proceeds until all copies are made. Occasionally the machine may jam or run out of

Exercises

109

CopyMachine

OutOfPaper J

size:=newValue

paperAdded paperTrayBecomesEmpty AND NOT allCopiesMade
MakingCopies\ paperPathCleared Paperdam J
do /printCopies paperPathBecomesBlocked do /flashWarningLight
allCopiesMade startPressed
powerTurnedOn /
internal N numCopies:=1,
increment / Test Warming isAutoContrast:=TRUE,
Coi Finished| 90/ internalTesting, oo 0.\ ormal
numCopies++ Ready Midkasks flashReadyLight o~
decrement entry /turnReady _| Off
}”nuu”r}q%oopp;fgsi}] LightOn powerTurnedOff /turnReadyLightOff &~
changeSize / changeContrast [NOT isAutoContrast] /

contrast:=newValue

toggleAutoContrast /
isAutoContrast:=NOT isAutoContrast

Figure ES.4 State diagram for a copy machine

paper. When the machine jams. the operator may clear the blockage and the machine will re-
sume making copies. Adding paper allows the machine to proceed after running out of paper.

Extend the diagram for the following observations. The copy machine does not work quite
right. When it jams, the operator must first remove the jammed paper and then turn the machine
off and on before it will operate correctly again. If the machine is turned off and on without first
removing the offending paper, the machine stays jammed.

5.11 (7) While exploring an old castle, you and a friend discovered a bookcase that you suspected to
be the entrance to a secret passageway. While you examined the bookcase, your friend removed
a candle from its holder, only to discover that the candle holder was the entrance control. The
bookcase rotated a half turn, pushing you along, separating you from your friend. Your friend
put the candle back. This time the bookcase rotated a full turn, still leaving you behind it.

Your friend took the candle out. The bookcase started to rotate a full turn again, but this time
you stopped it just shy of a full turn by blocking it with your body. Your friend handed you the
candle and together you managed to force the bookcase back a half turn, but this left your friend
behind it and you in front of it. You put the candle back. As the bookcase began to rotate, you
took out the candle, and the bookcase stopped after a quarter turn. You and your friend then en-
tered to explore further. _

Prepare a state diagram for the control of the bookcase that is consistent with the previous
scenario. What should you have done at first to gain entry with the least fuss?

6
Advanced State Modeling

Conventional state diagrams are sufficient for describing simple systems but need additional
power to handle large problems. You can more richly model complex systems by using nest-
ed state diagrams, nested states, signal generalization, and concurrency.

This is an advanced chapter and you can skip it upon a first reading of the book.

6.1 Nested State Diagrams

6.1.1 Problems with Flat State Diagrams

State diagrams have often been criticized because they allegedly are impractical for large
problems. This problem is true of flat, unstructured state diagrams. Consider an object with
n independent Boolean attributes that affect control. Representing such an object with a sin-
gle flat state diagram would require 2" states. By partitioning the state into »n independent
state diagrams, however, only 2n states are required.

Or consider the state diagram in Figure 6.1 in which n” transitions are needed to connect
every state to every other state. If this model can be reformulated using structure, the number
of transitions could be reduced as low as n. Complex systems typically contain much redun-
dancy that structuring mechanisms can simplify.

6.1.2 Expanding States

One way to organize a model is by having a high-level diagram with subdiagrams expanding
certain states. This is like a macro substitution in a programming language. Figure 6.2 shows
such a state diagram for a vending machine. Initially, the vending machine is idle. When a
person inserts coins, the machine adds the amount to the cumulative balance. After adding
some coins, a person can select an item. If the item is empty or the balance is insufficient,
the machine waits for another selection. Otherwise, the machine dispenses the item and re-
turns the appropriate change.

110

6.2 Nested States 111

Figure 6.1 Combinatorial explosion of transitions in flat state diagrams.
Flat state diagrams are impractical for large problems.

VendingMachine)

coins infamount) / set balance ~

(Collecting money
Idle) J@ms in(amount)/ add to balanc;

cancel / refund coins

[item empty] select(item) [change<0]

@/ test item and compute changa

[change=0] [change>0]
———{dispense: DispenseltemH do /make changg

Figure 6.2 Vending machine state diagram. You can simplify state dia-
grams by using subdiagrams.

Figure 6.3 elaborates the dispense state with a lower-level state diagram called a subma-
chine. A submachine is a state diagram that may be invoked as part of another state diagram.
The UML notation for invoking a submachine is to list a local state name followed by a colon
and the submachine name. Conceptually, the submachine state diagram replaces the local
state. Effectively. a submachine is a state diagram “subroutine.”

6.2 Nested States

You can structure states more deeply than just replacing a state with a submachine. As a
deeper alternative, you can nest states to show their commonality and share behavior. (In ac-
cordance with UML2 we avoid using generalization in conjunction with states. See the Bib-
liographic Notes for an explanation.)

112 Chapter 6 / Advanced State Modeling

Dispenseltem]
arm ready
H@o /move arm to correct ro@———-—-—)@o /move arm to correct cqumrD

pushed arm ready
%~ﬂdo /push item off sheH

Figure 6.3 Dispense item submachine of vending machine. A lower-level
state diagram can elaborate a state.

Figure 6.4 simplifies the phone line model from Chapter 5; a single transition from Ac-
tive to Idle replaces the transitions from each state to /dle. All the original states except ldle
are nested states of Active. The occurrence of event onHook in any nested state causes a tran-
sition to state Idle.

The composite state name labels the outer contour that entirely encloses the nested
states. Thus Active is a composite state with regard to nested states DialTone, Timeout, Dial-
ing, and so forth. You may nest states to an arbitrary depth. A nested state receives the out-
going transitions of its composite state. (By necessity, only ingoing transitions with a
specified nested state can be shared, or there would be ambiguity.)

Figure 6.5 shows a state diagram for an automobile automatic transmission. The trans-
mission can be in reverse, neutral, or forward; if it is in forward, it can be in first, second, or
third gear. States First, Second, and Third are nested states of state Forward.

Each of the nested states receives the outgoing transitions of its composite state. Select-
ing “N” in any forward gear shifts a transition to neutral. The transition from Forward to
Neutral implies three transitions, one from each forward gear to neutral. Selecting “F” in
neutral causes a transition to forward. Within state Forward, nested state First is the default
initial state, shown by the unlabeled transition from the solid circle within the Forward con-
tour. Forward is just an abstract state; control must be in a real state, such as First.

All three nested states share the transition on event stop from the Forward contour to
state First. In any forward gear, stopping the car causes a transition to First.

It is possible to represent more complicated situations, such as an explicit transition
from a nested state to a state outside the contour, or an explicit transition into the contour. In
such cases, all the states must appear on one diagram. In simpler cases where there is no in-
teraction except for initiation and termination, you can draw the nested states as separate di-
agrams and reference them by including a submachine, as in the vending machine example
of Figure 6.2.

For simple problems you can implement nested states by degradation into “flat” state di-
agrams. Another option is to promote each state to a class, but then you must take special
care to avoid loss of object identity. The becomes operation of Smalltalk lets an object
change class without a loss of identity, facilitating promotion of a state to a class. However,
the performance overhead of the becomes operation may become an issue with many state
changes. Promotion of a state to a class is impractical with C++, unless you use advanced
techniques, such as those discussed in [Coplien-92]. Java is similar to C++ in this regard.

6.2 Nested States 113

Phoneline

onHook/ disconnectLine _ .,
{ e

N————

offHook
Active N
DialTone \) Timeout \
do /soundDialTone do /soundLoudBeep
- timeout _
digit(n) Warning
_ do /play message
digit(n) | timeout
" Dialing Recorded
N invalidNumber | Message
do / playMessage
BusyTone numberBusy | yajidNumber
do / slowBusyTone '
j_sk_.ﬂ
Connecting
Q) /findConnection
FastBusyTone] routed messageDone
do /fastBusyTone/ trunkBusy

)

R néing
do /ringBell

calledPhoneAnswers / connectlLine

Connected

| (2

calledPhoneHangsUp / disconnectLine

Disconnected (<
N (Secomenesy J

Figure 6.4 Nested states for a phone line. A nested state receives the
outgoing transitions of its enclosing state.

Entry and exit activities are particularly useful in nested state diagrams because they
permit a state (possibly an entire subdiagram) to be expressed in terms of matched entry-exit
activities without regard for what happens before or after the state is active. Transitioning
into or out of a nested state can cause execution of several entry or exit activities, if the tran-
sition reaches across several levels of nesting. The entry activities are executed from the out-

side in and the exit activities from the inside out. This permits behavior similar to nested
subroutine calls.

114 Chapter 6 / Advanced State Modeling

CarTransmission) push R
®——{ Neutral *
push N

push N| | push F

Forward
stop upshift upshift
downshift downshift

Figure 6.5 Nested states. You can nest states (o an arbitrary depth.

6.3 Signal Generalization

You can organize signals into a generalization hierarchy with inheritance of si gnal attributes.
Figure 6.6 shows part of a tree of input signals for a workstation. Signals MouseButton and
KeyboardCharacter are two kinds of user input. Both signals inherit attribute device from
signal UserInput (the root of the hierarchy). MouseButtonDown and MouseButton Up inherit
location from MouseButton. KevboardCharacters can be divided into Control and Graphic
characters. Ultimately you can view every actual signal as a leaf on a generalization tree of
signals. In a state diagram, a received signal triggers transitions that are defined for any an-
cestor signal type. For example, typing an ‘a’ would trigger a transition on signal Alphanu-
meric as well as signal KevboardCharacter. Analogous to generalization of classes, we
recommend that all supersignals be abstract.

A signal hierarchy permits different levels of abstraction to be used in a model. For ex-
ample, some states might handle all input characters the same; other states might treat con-
trol characters differently from printing characters; still others might have difterent activities
on individual characters.

6.4 Concurrency

The state model implicitly supports concurrency among objects. In general, objects are au-
tonomous entities that can act and change state independent of one another. However. objects
need not be completely independent and may be subject to shared constraints that cause
some correspondence among their state changes.

6.4.1 Aggregation Concurrency

A state diagram for an assembly is a collection of state diagrams, one for each part. The ag-
gregate state corresponds to the combined states of all the parts. Aggregation is the “and-re-
lationship.” The aggregate state is one state from the first diagram, and a state from the
second diagram, and a state from each other diagram. In the more interesting cases, the part

»

6.4 Concurrency 115

«signal»
Userinput
device
[I
«signal» «signal»
MouseButton KeyboardCharacter
location character
[| F—i_T
«signal» «signal» «signal» «signal»
MouseButtonDown MouseButtonUp Control Graphic
[E |
«signal» «signal» «signal»
Space Alphanumeric Punctuation

Figure 6.6 Partial hierarchy for keyboard signals. You can organize
signals using generalization.

states interact. Transitions for one object can depend on another object being in a given state.
This allows interaction between the state diagrams, while preserving modularity.

Figure 6.7 shows the state of a Car as an aggregation of part states: Ignition, Transmis-
sion, Accelerator, and Brake (plus other unmentioned objects). The state of the car includes
one state from each part. Each part undergoes transitions in parallel with all the others. The
state diagrams of the parts are almost, but not quite, independent—the car will not start un-
less the transmission is in neutral. This is shown by the guard expression Transmission in
Neutral on the transition from Ignition-Off to Ignition-Starting.

6.4.2 Concurrency within an Object

You can partition some objects into subsets of attributes or links, each of which has its own
subdiagram. The state of the object comprises one state from each subdiagram. The subdia-
grams need not be independent; the same event can cause transitions in more than one sub-
diagram. The UML shows concurrency within an object by partitioning the composite state
into regions with dotted lines. You should place the name of the composite state in a separate
tab so that it does not become confused with the concurrent regions.

Figure 6.8 shows the state diagram for the play of a bridge rubber. When a side wins a
game, it becomes “vulnerable”; the first side to win two games wins the rubber. During the
play of the rubber, the state of the rubber consists of one state from each subdiagram. When
the Playing rubber composite state is entered, both regions are initially in their respective
default states Not vulnerable. Each region can independently advance to state Vulnerable

116 Chapter 6 / Advanced State Modeling

Car

Y
1] 1] 1]

Ignition | | Transmission| |Accelerator Brake

Ignition
w turn key to start

[Transmission in Neutral]
(off -

release key

® Startin
N \>raring
AL turn key off

Transmission J push R
o> Nel@;
push N

push N| | push F

Forward
stop upshift upshift
o~ First = { Second |_ .
— downshift - downshift

Accelerator) Brake)
depress accelerator depress brake
(ot) (on) | |e=(or] (on)
release brake

release accelerator

Figure 6.7 An aggregation and its concurrent state diagrams. The state diagram
for an assembly is a collection of state diagrams, one for each part.

when its side wins a game. When one side wins a second game, a transition occurs to the
corresponding Wins rubber state. This transition terminates both concurrent regions, because
they are part of the same composite state Playing rubber and are active only when the top-
level state diagram is in that state.

Most programming languages lack intrinsic support for concurrency. You can use a li-
brary, operating system primitives, or a DBMS to provide concurrency. During analysis you
should regard all objects as concurrent. During design you devise the best accommodation;
many implementations do not require concurrency, and a single thread of control suffices.

6.4.3 Synchronization of Concurrent Activities

Sometimes one object must perform two (or more) activities concurrently. The object does not
synchronize the internal steps of the activities but must complete both activities before it can

6.4 Concurrency 117

| Bridge ‘

| Playing rubber

N-S vulnerability

—, N-Sgame
Not vulnerable

Vulnerable

5 game
- N-S wins rubber
E-W vulnerability
E-W game E-W game
Not vuinerable Vulnerable /— E-W wins rubber

Figure 6.8 Bridge game with concurrent states. You can partition some objects into
subsets of attributes or links, each of which has its own subdiagram.

progress to its next state. For example, a cash dispensing machine dispenses cash and returns
the user’s card at the end of a transaction. The machine must not reset itself until the user takes
both the cash and the card, but the user may take them in either order or even simultaneously.
The order in which they are taken is irrelevant, only the fact that both of them have been taken.
This is an example of splitting control into concurrent activities and later merging control.

Figure 6.9 shows a concurrent state diagram for the emitting activity. The number of
concurrently active states varies during execution from one to two and back to one again. The
UML shows concurrent activities within a single composite activity by partitioning a state
into regions with dotted lines, as explained previously. Each region is a subdiagram that rep-
resents a concurrent activity within the composite activity. The composite activity consists
of exactly one state from each subdiagram.

CashDispenser) r —
Emitting ,
do /dispense cash) >(:)

do/ eje@——a@

Figure 6.9 Synchronization of control. Control can split into concurrent
activities that subsequently merge.

ready Ready to reset

Setting up

A transition that forks indicates splitting of control into concurrent parts. A small heavy
bar with one input arrow and two or more output arrows denotes the fork. The event and an
optional guard condition label the input arrow. The output arrows have no labels. Each output

118 Chapter 6 / Advanced State Modeling

arrow selects a state from a different concurrent subdiagram. In the example, the transition
on event ready splits into two concurrent parts, one to each concurrent subdiagram. When
this transition fires, two concurrent substates become active and execute independently.

Any transition into a state with concurrent subdiagrams activates each of the subdia-
grams. If the transition omits any subdiagrams, the subdiagrams start in their default initial
states. In this example, a forked arrow is not actually necessary. You could draw a transition
to the Emitting state, with each subdiagram having a default initial state.

The UML shows explicit merging of concurrent control by a transition with two or more
input arrows and one output arrow, all connected to a small heavy bar (not shown in Figure
6.9). The trigger event and optional guard condition are placed near the bar. The target state
becomes active when all of the source states are active and the trigger event occurs. Note that
the transition involves a single event, not one event per input arrow. If any subdiagrams in
the composite state are not part of the merge, they automatically terminate when the merge
transition fires. As a consequence, a transition from a single concurrent substate to a state
outside the composite state causes the other concurrent substates to terminate. You can re-
gard this as a degenerate merge involving a single state.

An unlabeled (completion) transition from the outer composite state to another state in-
dicates implicit merging of concurrent control (Figure 6.9). A completion transition fires
when activity in the source state is complete. A composite concurrent state is complete when
each of its concurrent substates is complete—that is, when each of them has reached its final
state. All substates must complete before the completion transition fires and the composite
state terminates. In the example, when both activities have been performed, both substates
are in their final states, the merge transition fires, and state Ready to reset becomes active.
Drawing a separate transition from each substate to the target state would have a different
meaning; either transition would terminate the other subdiagram without waiting for the oth-
er. The firing of a merge transition causes a state diagram to perform the exit activities (if
any) of all subdiagrams, in the case of both explicit and implicit merges.

6.5 A Sample State Model

We present a sample state model of a real device (a Sears “Weekender” Programmable Ther-
mostat) to show how the various modeling constructs fit together. We constructed this model
by reading the instruction manual and experimenting with the actual device. The device con-
trols a furnace and air conditioner according to time-dependent attributes that the owner en-
ters using a pad of buttons.

While running, the thermostat operates the furnace or air conditioner to keep the current
temperature equal to the target temperature. The target temperature is taken from a table of
values at the beginning of each program period. The table specifies the target temperature and
start time for eight different time periods, four on weekdays and four on weekends. The user
can override the target temperature.

The user programs the thermostat using a pad of ten pushbuttons and three switches and
sees parameters on an alphanumeric display. Each pushbutton generates an event every time
it is pushed. We assign one input event per button:

6.5 A Sample State Model 119

TEMP UP raises target temperature or program temperature

TEMP DOWN lowers target temperature or program temperature

TIME FWD advances clock time or program time

TIME BACK retards clock time or program time

SET CLOCK sets current time of day

SET DAY sets current day of the week

RUN PRGM leaves setup or program mode and runs the program

VIEW PRGM enters program mode to examine and modify eight program time

and program temperature settings
HOLD TEMP holds current target temperature in spite of the program
F-C BUTTON alternates temperature display between Fahrenheit and Celsius

Each switch supplies a parameter value chosen from two or three possibilities. We model
each switch as an independent concurrent subdiagram with one state per switch setting. Al-
though we assign event names to a change in state. it is the state of each switch that is of
interest. The switches and their settings are:

NIGHT LIGHT Lights the alphanumeric display. Values: light off, light on.

SEASON Specifies which device the thermostat controls. Values: heat (fur-
nace), cool (air conditioner), off (none).

FAN Specifies when the ventilation fan operates. Values: fan on (fan
runs continuously), fan auto (fan runs only when furnace or air
conditioner is operating).

The thermostat controls the furnace. air conditioner, and fan power relays. We model this
control by activities run furnace, run air conditioner, and run fan.

The thermostat has a sensor for air temperature that it reads continuously, which we mod-
el by an external parameter temp. The thermostat also has an internal clock that it reads and
displays continuously. We model the clock as another external parameter time, since we are
not interested in building a state model of the clock. In building a state model, it is important
to include only states that affect the flow of control and to model other information as param-
eters or variables. We introduce an internal state variable target temp to represent the current
temperature that the thermostat is trying to maintain. Some activities read this state variable
and others set it; the state variable permits communication among parts of the state model.

Figure 6.10 shows the top-level state diagram of the programmable thermostat. It con-
tains seven concurrent subdiagrams. The user interface is too large to show and is expanded
separately (Figure 6.11). The diagram includes trivial subdiagrams for the season switch and
the fan switch. The other four subdiagrams show the output of the thermostat: the furnace,
air conditioner, the run indicator light, and fan relays. Each of these subdiagrams contains an
Off and an On substate. The state of each subdiagram is totally determined by input param-
eters and the state of other subdiagrams, such as the season switch or the fan switch. The state
of the four subdiagrams on the right is totally derived and contains no additional information.

Figure 6.11 shows the subdiagram for the user interface. The diagram contains three
concurrent subdiagrams, one for the interactive display. one for the temperature mode, and

120 Chapter 6 / Advanced State Modeling

one for the night light. The night light is controlled by a physical switch, so the default initial
state s irrelevant; its value can be determined directly. The temperature display mode is con-
trolled by a single pushbutton that toggles the temperature units between Fahrenheit and Cel-
sius. The default initial state is necessary; when the device is powered on, the initial
temperature mode is Fahrenheit.

The subdiagram for the interactive display is more interesting. The device is either op-
erating or being set up. State Operate has three concurrent substates—one includes Run and
Hold, another controls the target temperature display. and the third controls the time and
temperature display. Every two seconds the display alternates between the current time and
current temperature. The target temperature is displayed continuously and is modified by the
temp up and temp down buttons, as well as the ser rarger event that is generated only in the
Run state. Note that the target temp parameter set by this subdiagram is the same parameter
that controls the output relays.

After every second in the Run state, the current time is compared (o the stored program
times in the program table; if they are equal, then the program advances to the next program
period. and the Run state is reentered. The run state is also entered whenever the run program
button is pressed in any state. as shown by the transition from the contour to the Operate state
and the default initial transition to Run. Whenever the Run state is entered, the entry activity
on the state resets the target temperature from the program table.

While the program is in the Hold state, the program temperature cannot be advanced au-
tomatically. but the temperature can still be modified directly by the temp up and temp down
buttons. If the interface is in one of the setup states for 90 seconds without any input, the
system enters the Hold state. Entering the Hold substate also forces entry to the default initial
states of the other two concurrent subdiagrams of Operate. The Setup state was included in
the model just to group the three setup nested states for the 90-second timeout transition.
Note a small anomaly of the device: The hold button has no effect within the Serup state,
although the Hold state can be entered by waiting for 90 seconds.

The three setup subdiagrams are shown in Figure 6.12. Pressing sef clock enters the Set
minutes nested state as initial default. Subsequent ser clock presses toggle between the Set
hours and the Set minutes nested states. The time fwd and time back buttons modify the pro-
gram time. Pressing set day enters the Ser day nested state and shows the day of the week.
Subsequent presses increment the day directly.

Pressing view program enters the Set program nested state, which has three concurrent
subdiagrams, one each controlling the display of the program time, program temperature,
and program period. The Ser program state always starts with the first program period, while
subsequent view program events cycle through the 8 program periods. The view program
event is shown on all three subdiagrams, each diagram advancing the setting that it controls.
Note that the time fwd and time back events modify time in 15-minute increments, unlike the
same events in the set clock state. Note also that the temp up and temp down transitions have
guard conditions to keep the temperature in a fixed range.

None of the Interactive display nested states has an explicit exit transition. Each nested
state is implicitly terminated by a transition into another nested state from the main Interac-
tive display contour.

6.5 A Sample State Model 121

ProgrammableThermostat)

/ Furnace relay \
(ui: User Inte rface) when (temp < target and Season switch in Heat)

Furnace on
do /run furnace

(Furnace off

N

Season switch X)
when (temp > target + d or Season switch not in Heat

Heat)

heat off

Air conditioner relay

when (temp > target and Season switch in Cool)

o
AC on
off | | cool kc °§ do /run AC

(Cool > when (temp < target - d or Season switch not in Cool)

Run indicator
Fan switch when (Furnace in on or AC inon)

(Fan switchon) \ -
S Something on
do /light indicator

{ : #
fan fan { Eve_rzihlng o
on auto
——
when (Furnace in off and AC in off)
Gan switch ath

Fan relay

when (Run indicator in Something on
or Fan switch inon)

Fan on

k when (Run indicator in Everythlng off and

Fan switch in auto)

Figure 6.10 State diagram for programmable thermostat

122 Chapter 6 / Advanced State Modeling

User interface . .
— run program Interactive display power on
— / load standard program
Operat;l
/ - ——\after (2 sec) after (1 sec) [time=program time]
Display time Display temp \ / advance program
do /show time do /show-temp
after (2 sec)

Run

entry / set target

set target (temp) / reset target temp (temp from program)

temp up / increment
target temp run program | | hold

Display target temp
do / show target temp

@old)
temp down / decrement target temp

/

after (90 sec without input)

Setup
sc: Set clock) (sd: Set daD (sp: Set program)
set clock set day view program

Temperature mode

- : F-C button Ve N ;
Temp in Fahrenheit] > Temp in Celsius
entry / convert temp to F -_entry/ convert temp to C

F-C button

Night light switch
touch button down /

{ Light off |_

Figure 6.11 Subdiagram for thermostat user interface

Light on
\ do /shine light
~

touch button up

6.6 Relation of Class and State Models

123

Set clock

time fwd / increment minutes

Set minutes
do /show minutes

time back / decrement minutes

time fwd / increment hours

Set hours
do /show hours

time back / decrement hours

Set day |

set day
/ increment day

do /show day

Set program |

time fwd / add 15 minutes to program time

[N\

/ set to first program time s

° { do/display program tim@)

_/

time back / subtract 15 minutes from program time

temp up[temp<90F] / increment program temp

[N

/ set to first program temp /e
. (@

o /display program te@

_/

temp down[temp>40F] / decrement program temp

/ set to first program perio
' ~(

d
\

. . . view program / advance
do /display program peno@ to ne)F:t p?ogram period

view program / advance
to next program time

view program / advance
to next program temp

Figure 6.12 Subdiagrams for thermostat user interface setup

6.6 Relation of Class and State Models

The state model specifies allowable sequences of changes to objects from the class model. A
state diagram describes all or part of the behavior of the objects of a given class. States are

equivalence classes of values and links for an object.

State structure is related to and constrained by class structure. A nested state refines the
values and links that an object can have. Both generalization of classes and nesting of states
partition the set of possible object values. A single object can have different states over
time—the object preserves its identity—but it cannot have different classes. Inherent differ-

124 Chapter 6 / Advanced State Modeling

ences among objects are therefore properly modeled as different classes, while temporary
differences are properly modeled as different states of the same class.

A composite state is the aggregation of more than one concurrent substate. There are
three sources of concurrency within the class model. The first is aggregation of objects: Each
part of an aggregation has its own independent state, so the assembly can be considered to
have a state that is the combination of the states of all its parts. The second source is aggre-
gation within an object: The values and links of an object are its parts, and groups of them
taken together define concurrent substates of the composite object state. The third source is
concurrent behavior of an object, such as found in Figure 6.9. The three sources of concur-
rency are usually interchangeable. For example, an object could contain an attribute to indi-
cate that it was performing a certain activity.

The state model of a class is inherited by its subclasses. The subclasses inherit both the
states of the ancestor and the transitions. The subclasses can have their own state diagrams.
But how do the state diagrams of the superclass and the subclass interact? If the superclass
state diagrams and the subclass state diagrams deal with disjoint sets of attributes, there is
no problem—the subclass has a composite state composed of concurrent state diagrams.

If, however, the state diagram of the subclass involves some of the same attributes as the
state diagram of the superclass, a potential conflict exists. The state diagram of the subclass
must be a refinement of the state diagram of the superclass. Any state from the parent state
diagram can be elaborated with nesting.or split into concurrent parts, but new states or tran-
sitions cannot be introduced into the parent diagram directly, because the parent diagram
must be a projection of the child diagram. Although refinement of inherited state diagrams
is possible, usually the state diagram of a subclass should be an independent, orthogonal,
concurrent addition to the state diagram inherited from a superclass, defined on a different
set of attributes (usually the ones added in the subclass).

The signal hierarchy is independent of the class hierarchy for the classes exchanging
signals, in practice if not in theory. Signals can be defined across difterent classes of objects.
Signals are more fundamental than states and more parallel to classes. States are defined by
the interaction of objects and events. Transitions can often be implemented as operations on
objects, with the operation name corresponding to the signal name. Signals are more expres-
sive than operations, however, because the effect of a signal depends not only on the class of
an object but also on its state.

6.7 Practical Tips

The following practical tips have been mentioned throughout the chapter but are summarized

here for convenience.

B Structured state diagrams. Use structure to organize models with more than 10-15
states. (Section 6.1)

W State nesting. Use nesting when the same transition applies to many states. (Section
6.2)

6.8 Chapter Summary 125

W Concrete supersignals. Analogous to generalization of classes, it is best to avoid con-
crete supersignals. Then, abstract and concrete signals are readily apparent at a glance—
all supersignals are abstract and all leaf subsignals are concrete. You can always elimi-
nate concrete supersignals by introducing an Other subsignal. (Section 6.3)

® Concurrency. Most concurrency arises from object aggregation and need not be shown
explicitly in the state diagram. Use composite states to show independent facets of the
behavior of a single object. (Section 6.4)

B Consistency of diagrams. Check the various state diagrams for consistency on shared
events so that the full state model will be correct. (Section 6.5)

B State modeling and class inheritance. Try to make the state diagrams of subclasses in-
dependent of the state diagrams of their superclasses. Subclass state diagrams should
concentrate on attributes unique to the subclasses. (Section 6.6)

6.8 Chapter Summary

A class model describes the objects, values, and links that can exist in a system. The values
and links held by an object are called its state. Over time, the objects stimulate each other,
resulting in a series of changes to their states. Objects respond to events, which are occur-
rences at a point in time. The response to an event depends on the state of the object receiving
it, and can include a change of state or the sending of a signal to the original sender or to a
third object.

The combinations of events, states, and state transitions for a given class can be abstract-
ed and represented as a state diagram. A state diagram is a network of states and events, just
as a class diagram is a network of classes and relationships. The state model consists of mul-
tiple state diagrams, one state diagram for each class with important dynamic behavior, and
shows the possible behavior for an entire system. Each object independently executes the
state diagram for its class. The state diagrams for the various classes communicate via shared
events.

States and events can both be expanded to show greater detail. Nested states share the
transitions of their composite states. Signals can be organized into inheritance hierarchies.
Subsignals trigger the same transitions as their supersignals.

Objects are inherently concurrent, and each object has its own state. State diagrams
show concurrency as an aggregation of concurrent states, each operating independently.
Concurrent objects interact by exchanging events and by testing conditions of other objects,
including states. Transitions can split or merge flow of control.

Entry and exit activities permit activities to cover all the transitions entering or exiting
the state. They make self-contained state diagrams possible for use in multiple contexts. In-
ternal activities represent transitions that do not leave the state.

A subclass inherits the state diagrams of its ancestors, to be concurrent with any state
diagram that it defines. It is also possible to refine an inherited state diagram by expanding
states into nested states or concurrent subdiagrams.

126 Chapter 6 / Advanced State Modeling

A realistic model of a programmable thermostat takes three pages and illustrates subtle-
ties of behavior that are not apparent from the instruction manual or from everyday operation.

composite state nested state diagram state model
concurrency region synchronization
control signal generalization submachine
nested state state aggregation

Figure 6.13 Key concepts for Chapter 6

Bibliographic Notes

Much of this chapter follows the work of David Harel, who has formalized his concepts in a
notation called state charts [Harel-87]. Harel’s treatment is the most successful attempt to
date to structure finite state diagrams and avoid the combinatorial explosion that has plagued
them. Harel describes a contour-based notation for state diagrams as a special case of a gen-
eral diagram notation that he calls higraphs [Harel-88].

The first edition of this book included state generalization, but the second edition omits
the concept in accordance with its omission in UML2. The UML2 metamodel restricts gen-
eralization to classifiers and a state is not a classifier. There are similarities between gener-
alization of classes and nesting of states, but strictly speaking, in UML?2 there is no state
generalization.

There are many fine points of state modeling with UML2. See [Rumbaugh-05] for more
information.

We thank Mikael Berndtsson for suggesting Exercise 6.12.

References

[Coplien-92] James O. Coplien. Advanced C++: Programming Stvles and Idioms. Boston: Addison-
Wesley, 1992.

[Harel-87] David Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming 8 (1987), 231-274.

[Harel-88] David Harel. On visual formalisms. Communications of ACM 31, 5 (May 1988). 514-530.

[Rumbaugh-05] James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling Language Ref-
erence Manual, Second Edition. Boston: Addison-Wesley, 2005.

Exercises

6.1 (3) The direction control for some of the first toy electric trains was accomplished by interrupt-
ing the power to the train. Prepare state diagrams for the headlight and wheels of the train. cor-
responding to the following sequence of events:

Exercises 127

6.2

6.4

6.6

6.7

Power is off, train is not moving.

Power is turned on, train runs forward with its headlight shining.
Power is turned off, train stops and headlight goes out.

Power is turned on, headlight shines and train does not move.
Power is turned off, headlight goes out.

Power is turned on, train runs backward with its headlight shining.
Power is turned off, train stops and headlight goes out.

Power is turned on, headlight shines and train does not move.
Power is turned off, headlight goes out.

Power is turned on, train runs forward with its headlight shining.

(6) Revise the state diagram from Exercise 5.2 to provide for more rapid setting of the time by
pressing and holding the B button. If the B button is pressed and held for more than 5 seconds
in set time mode, the hours or minutes (depending on the submode) increment once every 1/2
second. (Instructor’s note: You may want to give the students a copy of our answer to Exercise
5.2 as the basis for this exercise.)

(5) Revise the state diagram from your answer to Exercise 5.6 by noting the commonality of the
starting and running states. There is a transition from either the starting or the running state to
the off state when “on” is not wanted. (Instructor’s note: You may want to give the students a
copy of our answer to Exercise 5.6 as the basis for this exercise.)

(6) Three-phase induction motors will spin either clockwise or counterclockwise, depending on
the connection to the power lines. In applications requiring motor operation in both directions,
two separate contactors (power relays) might be used to make the connections, one for each di-
rection. Also, in some applications of large motors, the motor starts through a transformer that
reduces the impact on the power supply. The transformer is bypassed by a third contactor after
the motor has been given enough time to come up to speed. There are three momentary control
inputs: requests for forward, reverse, or off. When the motor is off, forward or reverse requests
cause the motor to start up and run in the requested direction. A reverse request is ignored if the
motor is starting or running in the forward direction. and vice versa. An off request at any time
shuts the motor off.

Figure E6.1 is a state diagram for one possible motor control. Convert it from a single state
diagram into two concurrent state diagrams, one to control the direction of the motor and one
for starting control.

(3) The control in the previous exercise does not provide for thermal protection.

a. Modify the state diagram in Figure E6.1 to shut the motor off if an overheating condition is
detected at any time.

b. Modify the concurrent state diagrams that you produced in Exercise 6.4 to shut the motor off
if an overheating condition is detected at any time.

(2) Place the following signal classes into a generalization hierarchy: pick, character input, line
pick, circle pick, box pick, text pick, input signal.

(7) A gas-fired, forced hot-air, home heating system maintains room temperature and humidity
in the winter using distributed controls. The comfort of separate rooms may be controlled some-
what independently. Heat is requested from the furnace for each room based on its measured
temperature and the desired temperature for that room. When one or more rooms require heat.
the furnace is turned on. When the temperature in the furnace is high enough, a blower on the

128

Chapter 6 / Advanced State Modeling

InductionMotorControl)

off request

forward request

!

Starting forward

entry / start timer
do / energize forward contacto

Starting reverse

entry / start timer
do /energize reverse contactoy

timeout

timeout

off request

Running forward

do / energize running contactor,
energize forward contactor

AN

Running reverse

do /energize running contactor,
energize reverse contactor

reverse request

off request

off request

6.8

Figure E6.1 State diagram for an induction motor control

furnace is turned on to send hot air through heating ducts. If the temperature in the furnace cx-
ceeds a safety limit, the furnace is shut off and the blower continues to run. Flappers in the ducts
are controlled by the system to deliver heat only to those rooms that need it. When the room(s)
no longer require heat, the furnace is shut off, but the blower continues to deliver hot air until
the furnace has cooled oft.

Humidity is also maintained based on a strategy involving desired humidity, measured hu-
midity, and outside temperature. The desired humidity is set by the user for the entire home. Hu-
midity of the cool air returning to the blower is measured. When the system determines that the
humidity is too low, a humidifier in the furnace is turned on, whenever the blower is on, to inject
moisture into the air leaving the blower.

Partition the control of this system into concurrent state diagrams. Describe the functioning
of each state diagram without actually going into the details of states or activities.

Figure E6.2 is a portion of the state diagram for the control of a video cassette recorder (VCR).
The VCR has several buttons, including select, on/off, and set for setting the clock and automatic
start-stop timers, auto for enabling automatic recording, ver for bypassing the VCR, and rimed
for recording for 15-minute increments. Many of the events in Figure E6.2 correspond to press-
ing the button with the same name. Several buttons have a toggling behavior. For example,
pressing ver toggles between VCR and TV mode. Several buttons used for manual control of
the VCR are not accounted for in Figure E6.2, such as play. record, fast forward, rewind, pause,
and eject. These buttons are enabled only in the Manual state. Do the following:

a. (2) Prepare lists of events and activities along with a brief definition.

b. (7) Prepare a user’s manual explaining how to operate the VCR.

Exercises 129

VideoCassetteRecorder

Set clock
do /display time

Minutes
do /flash minutes
set/ next minute

select

select Hour select
do /flash hour

set/ next hour

Day
do /flash day
set/ next day

f Set start timer . \
entry / initialize start time
do /display start time

select select se_lecr

Channel

do /flash channel
set/ next channel

Start minutes

do /flash minutes
set/ next minute

Start hour
do /flash hour

Start day
do /flash day

select

on/off

on/off
Set stop timer \
entry / initialize stop time

do /display stop time
do / record

timed / more time 59’90’ i
S
] top hour Stop minutes
timeout do /flash hour do /flash minutes
timed set/ next hour, setf next minute
on/off K T selec t J
Manual \

do /display time, |

update time / i auto

Automatic
do / display time, update time, display “auto”

hen (time = start time)
auto -)LV Auto record)
Auto off - do /record
" when (time = stop time)
VCR ver v
do /vcer output do /tv output
ver —

Timed record

select

Figure E6.2 Portion of a state diagram for a video cassette recorder

130

6.9

6.10

6.11

6.12

Chapter 6 / Advanced State Modeling

¢. (7) By adding states, extend the state diagram to accommodate another start-stop timer for
a second channel.

d. (7) There is a great deal of commonality in your answer to the previous part. For example,
setting the hour may be done in several contexts with similar results. Discuss how duplica-
tion of effort could be reduced.

(6) The diagram in Figure E5.4 has a major omission. The power can be turned off at any time,
and the machine should transition to the off state. We could add a transition from each state to
the off state, but this would clutter the diagran. Remedy this defect by using nested states.

(6) Figure E6.3 contains a class diagram for two persons playing a game of table tennis. Con-
struct a state model corresponding to the class model.

The rules of table tennis are as follows. At the beginning of a game, the two players ‘ping’
for serve—that is, they bounce the ball over the net and hit it back and forth several times. The
winner of the ‘ping’ serves first.

The winner of the ‘ping’ serves five times. Then the other player serves five times. Then the
winner of the ‘ping’ serves five times again. This alternation of serve continues until either play-
er wins the game.

A game may be won upon shutout (11-0) or when a player reaches 21 with at least a 2-point
margin. If the score becomes tied at 20-20. the players then begin alternating individual serves
until a player has a 2-point margin of victory.

TableTennisGame % . Player | 1 loser
! 2
volleyNumber PlayerGame NaMe |1 winner
" 1 ;
| hasinitialServe server receiver
/ gameScore
* ok
*
Volle
0..1 v
/ isExtraVolley| *

Figure E6.3 Class model for game of table tennis

(10) Sometimes it is helpful to use reification-—to promote something that is not an object into
an object. Reification is a helpful technique for meta applications because it lets you shift the
level of abstraction. On occasion it is useful to promote attributes, methods. constraints, and
control information into objects so you can describe and manipulate them as data.

Construct a class model that reifies and supports the following state modeling concepts:
event, state, transition, condition, activity, signal event, change event, and signal attribute.

(7) Take the model in Figure 6.5 and remove state nesting. That is, construct a flat state diagram
with equivalent semantics.

7

Interaction Modeling

The interaction model is the third leg of the modeling tripod and describes interactions with-
in a system. The class model describes the objects in a system and their relationships, the
state model describes the life cycles of the objects, and the interaction model describes how
the objects interact.

The interaction model describes how objects interact to produce useful results. Itis a ho-
listic view of behavior across many objects, whereas the state model is a reductionist view
of behavior that examines each object individually. Both the state model and the interaction
model are needed to describe behavior fully. They complement each other by viewing be-
havior from two different perspectives.

Interactions can be modeled at different levels of abstraction. At a high level, use cases
describe how a system interacts with outside actors. Each use case represents a piece of func-
tionality that a system provides to its users. Use cases are helpful for capturing informal re-
quirements.

Sequence diagrams provide more detail and show the messages exchanged among a set
of objects over time. Messages include both asynchronous signals and procedure calls. Se-
quence diagrams are good for showing the behavior sequences seen by users of a system.

And finally, activity diagrams provide further detail and show the flow of control among
the steps of a computation. Activity diagrams can show data flows as well as control flows.
Activity diagrams document the steps necessary to implement an operation or a business
process referenced in a sequence diagram.

7.1 Use Case Models

7.1.1 Actors

An actor is a direct external user of a system-—an object or set of objects that communicates
directly with the system but that is not part of the system. Each actor represents those objects

131

132 Chapter 7 / Interaction Modeling

that behave in a particular way toward the system. For example, customer and repair techni-
cian are different actors of a vending machine. For a travel agency system, actors might in-
clude traveler, agent, and airline. For a computer database system, actors might include user
and administrator. Actors can be persons, devices, and other systems—anything that inter-
acts directly with the system.

An object can be bound to multiple actors if it has different facets to its behavior. For
example, the objects Mary, Frank, and Paul may be customers of a vending machine. Paul
may also be a repair technician for the vending machine.

An actor has a single well-defined purpose. In contrast, objects and classes often com-
bine many different purposes. An actor represents a particular facet of objects in its interac-
tion with a system. The same actor can represent objects of different classes that interact
similarly toward a system. For example, even though many different individual persons use
a vending machine, their behavior toward the vending machine can all be summarized by the
actors customer and repair technician. Each actor represents a coherent set of capabilities
for its objects.

Modeling the actors helps to define a system by identifying the objects within the system
and those on its boundary. An actor is directly connected to the system—an indirectly con-
nected object is not an actor and should not be included as part of the system model. Any
interactions with an indirectly connected object must pass through the actors. For example,
the dispatcher of repair technicians from a service bureau is not an actor of a vending ma-
chine—only the repair technician interacts directly with the machine. If it is necessary to
model the interactions among such indirect objects, then a model should be constructed of
the environment itself as a larger system. For example, it might be useful to build a model of
a repair service that includes dispatchers, repair technicians, and vending machines as actors,
but that is a different model from the vending machine model.

7.1.2 Use Cases

The various interactions of actors with a system are quantized into use cases. A use case is
a coherent piece of functionality that a system can provide by interacting with actors. For
example, a customer actor can buy a beverage from a vending machine. The customer inserts
money into the machine, makes a selection, and ultimately receives a beverage. Similarly, a
repair technician can perform scheduled maintenance on a vending machine. Figure 7.1
summarizes several use cases for a vending machine.

Each use case involves one or more actors as well as the system itself. The use case buy
a beverage involves the customer actor and the use case perform scheduled maintenance in-
volves the repair technician actor. In a telephone system, the use case make a call involves
two actors, a caller and a receiver. The actors need not all be persons. The use case make a
trade on an online stock broker involves a customer actor and a stock exchange actor. The
stock broker system needs to communicate with both actors to execute a trade.

A use case involves a sequence of messages among the system and its actors. For exam-
ple, in the buy a beverage use case, the customer first inserts a coin and the vending machine
displays the amount deposited. This can be repeated several times. Then the customer pushes

7.1 Use Case Models 133

B Buy a beverage. The vending machine delivers a beverage after a customer se-
lects and pays for it.

W Perform scheduled maintenance. A repair technician performs the periodic
service on the vending machine necessary to keep it in good working condition.

B Make repairs. A repair technician performs the unexpected service on the vend-
ing machine necessary to repair a problem in its operation.

B Load items. A stock clerk adds items into the vending machine to replenish its
stock of beverages.

Figure 7.1 Use case summaries for a vending machine. A use case is a coherent
piece of functionality that a system can provide by interacting with actors.

a button to indicate a selection; the vending machine dispenses the beverage and issues
change, if necessary.

Some use cases have a fixed sequence of messages. More often, however, the message
sequence may have some variations. For example, a customer can deposit a variable number
of coins in the buy a beverage use case. Depending on the money inserted and the item se-
lected, the machine may, or may not, return change. You can represent such variability by
showing several examples of distinct behavior sequences. Typically you should first define a
mainline behavior sequence, then define optional subsequences, repetitions, and other vari-
ations.

Error conditions are also part of a use case. For example. if the customer selects a bev-
erage whose supply is exhausted, the vending machine displays a warning message. Similar-
ly, the vending transaction can be cancelled. For example. the customer can push the coin
return on the vending machine at any time before a selection has been accepted; the machine
returns the coins, and the behavior sequence for the use case is complete. From the user’s
point of view, some kinds of behavior may be thought of as errors. The designer, however,
should plan for all possible behavior sequences. From the system’s point of view, user errors
or resource failures are just additional kinds of behavior that a robust system can accommo-
date.

A use case brings together all of the behavior relevant to a slice of system functionality.
This includes normal mainline behavior, variations on normal behavior, exception condi-
tions, error conditions, and cancellations of a request. Figure 7.2 explains the buy a beverage
use case in detail. Grouping normal and abnormal behavior under a single use case helps to
ensure that all the consequences of an interaction are considered together.

In a complete model, the use cases partition the functionality of the system. They should
preferably all be at a comparable level of abstraction. For example, the use cases make tele-
phone call and record voice mail message are at comparable levels. The use case sef external
speaker volume to high is too narrow. It would be better as ser speaker volume (with the vol-
ume level selection as part of the use case) or maybe even just set telephone parameters, un-
der which we might group setting volume, display pad settings, setting the clock, and so on.

134 Chapter 7 / Interaction Modeling

Use Case: Buy a beverage

Summary: The vending machine delivers a beverage after a customer selects and
pays for it.

Actors: Customer

Preconditions: The machine is waiting for money to be inserted.

Description: The machine starts in the waiting state in which it displays the message
“Enter coins.” A customer inserts coins into the machine. The machine displays the
total value of money entered and lights up the buttons for the items that can be pur-
chased for the money inserted. The customer pushes a button. The machine dispenses
the corresponding item and makes change, if the cost of the item is less than the mon-
ey inserted.

Exceptions:

Canceled: If the customer presses the cancel button before an item has been selected,
the customer’s money is returned and the machine resets to the waiting state.

Out of stock: If the customer presses a button for an out-of-stock item, the message
“That item is out of stock™ is displayed. The machine continues to accept coins or a
selection.

Insufficient money: If the customer presses a button for an item that costs more than
the money inserted, the message “You must insert $nxn.nn more for that item” is dis-
played, where nn.nn is the amount of additional money needed. The machine contin-
ues to accept coins or a selection.

No change: If the customer has inserted enough money to buy the item but the ma-
chine cannot make the correct change, the message “Cannot make correct change” is
displayed and the machine continues to accept coins or a selection.

Postconditions: The machine is waiting for money to be inserted.

Figure 7.2 Use case description. A use case brings together all of the
behavior relevant to a slice of system functionality.

7.1.3 Use Case Diagrams

A system involves a set of use cases and a set of actors. Each use case represents a slice of
the functionality the system provides. The set of use cases shows the complete functionality
of the system at some level of detail. Similarly, each actor represents one kind of object for
which the system can perform behavior. The set of actors represents the complete set of ob-
jects that the system can serve. Objects accumulate behavior from all the systems with which
they interact as actors.

The UML has a graphical notation for summarizing use cases and Figure 7.3 shows an
example. A rectangle contains the use cases for a system with the actors listed on the outside.
The name of the system may be written near a side of the rectangle. A name within an ellipse

7.1 Use Case Models 135

Vending Machine

buy
beverage

Customer

/i

—1 Repair technician

perform
scheduled
maintenance

make

repaiy

R

Stock clerk

Figure 7.3 Use case diagram for a vending machine. A system involves a
set of use cases and a set of actors.

denotes a use case. A “stick man” icon denotes an actor, with the name being placed below
or adjacent to the icon. Solid lines connect use cases to participating actors.

[n the figure, the actor Repair technician participates in two use cases, the others in one
each. Multiple actors can participate in a use case, even though the example has only one
actor per use case.

7.1.4 Guidelines for Use Case Models

Use cases identify the functionality of a system and organize it according to the perspective
of users. In contrast, traditional requirements lists can include functionality that is vague to
users, as well as overlook supporting functionality, such as initialization and termination.
Use cases describe complete transactions and are therefore less likely to omit necessary
steps. There is still a place for traditional requirements lists in describing global constraints
and other nonlocalized functionality, such as mean time to failure and overall throughput, but
you should capture most user interactions with use cases. The main purpose of a system is
almost always found in the use cases, with requirements lists supplying additional imple-
mentation constraints. Here are some guidelines for constructing use case models.

B First determine the system boundary. It is impossible to identify use cases or actors
if the system boundary is unclear.

B Ensure that actors are focused. Each actor should have a single, coherent purpose. If
a real-world object embodies multiple purposes. capture them with separate actors. For
example, the owner of a personal computer may install software, set up a database, and
send email. These functions differ greatly in their impact on the computer system and
the potential for system damage. They might be broken into three actors: system admin-

136 Chapter 7 / Interaction Modeling

istrator, database administrator, and computer user. Remember that an actor is defined
with respect to a system, not as a free-standing concept.

B Each use case must provide value to users. A use case should represent a complete
transaction that provides value to users and should not be defined too narrowly. For ex-
ample, dial a telephone number is not a good use case for a telephone system. It does not
represent a complete transaction of value by itself; it is merely part of the use case make
telephone call. The latter use case involves placing the call, talking, and terminating the
call. By dealing with complete use cases, we focus on the purpose of the functionality
provided by the system, rather than jumping into implementation decisions. The details
come later. Often there is more than one way to implement desired functionality.

B Relate use cases and actors. Every use case should have at least one actor, and every
actor should participate in at least one use case. A use case may involve several actors,
and an actor may participate in several use cases.

B Remember that use cases are informal. It is important not to be obsessed by formal-
ism in specifying use cases. They are not intended as a formal mechanism but as a way
to identify and organize system functionality from a user-centered point of view. It is
acceptable if use cases are a bit loose at first. Detail can come later as use cases are ex-
panded and mapped into implementations.

B Use cases can be structured. For many applications, the individual use cases are com-
pletely distinct. For large systems. use cases can be built out of smaller fragments using
relationships (see Chapter 8).

7.2 Sequence Models

The sequence model elaborates the themes of use cases. There are two kinds of sequence
models: scenarios and a more structured format called sequence diagrams.

7.2.1 Scenarios

A scenario is a sequence of events that occurs during one particular execution of a system,
such as for a use case. The scope of a scenario can vary; it may include all events in the sys-
tem, or it may include only those events impinging on or generated by certain objects. A sce-
nario can be the historical record of executing an actual system or a thought experiment of
executing a proposed system.

A scenario can be displayed as a list of text statements, as Figure 7.4 illustrates. In this
example, John Doe logs on with an online stock broker system, places an order for GE stock,
and then logs off. Sometime later, after the order is executed, the securities exchange reports
the results of the trade to the broker system. John Doe will see the results on the next login,
but that is not part of this scenario.

The example expresses interaction at a high level. For example, the step John Doe logs
in might require several messages between John Doe and the system. The essential purpose
of the step, however, is the request to enter the system and providing the necessary identifi-

7.2 Sequence Models 137

John Doe logs in.

System establishes secure communications.

System displays portfolio information.

John Doe enters a buy order for 100 shares of GE at the market price.
System verifies sufficient funds for purchase.

System displays confirmation screen with estimated cost.
John Doe confirms purchase.

System places order on securities exchange.

System displays transaction tracking number.

John Doe logs out.

System establishes insecure communication.

System displays good-bye screen.

Securities exchange reports results of trade.

Figure 7.4 Scenario for a session with an online stock broker. A scenario is a se-
quence of events that occurs during one particular execution of a system.

cation—the details can be shown separately. At early stages of development, you should ex-
press scenarios at a high level. At later stages. you can show the exact messages. Determining
the detailed messages is part of development.

A scenario contains messages between objects as well as activities performed by ob-
jects. Each message transmits information from one object to another. For example, John
Doe logs in transmits a message from John Doe to the broker system. The first step of writing
a scenario is to identify the objects exchanging messages. Then you must determine the
sender and receiver of each message, as well as the sequence of the messages. Finally, you
can add activities for internal computations as scenarios are reduced to code.

7.2.2 Sequence Diagrams

A text format is convenient for writing, but it does not clearly show the sender and receiver
of each message, especially if there are more than two objects. A sequence diagram shows
the participants in an interaction and the sequence of messages among them. A sequence di-
agram shows the interaction of a system with its actors to perform all or part of a use case.

Figure 7.5 shows a sequence diagram corresponding to the previous stock broker sce-
nario. Each actor as well as the system is represented by a vertical line called a lifeline and
each message by a horizontal arrow from the sender to the receiver. Time proceeds from top
to bottom, but the spacing is irrelevant; the diagram shows only the sequence of messages,
not their exact timing. (Real-time systems impose time constraints on event sequences, but
that requires extra notation.) Note that sequence diagrams can show concurrent signals—
stock broker system sends messages to customer and securities exchange concurrently—and
signals between participants need not alternate—stock broker system sends secure commu-
nication followed by display portfolio.

Each use case requires one or more sequence diagrams to describe its behavior. Each se-
quence diagram shows a particular behavior sequence of the use case. It is best to show a
specific portion of a use case and not attempt to be too general. Although it is possible to

138 Chapter 7 / Interaction Modeling

:Customer :StockBrokerSystem :SecuritiesExchange

login

secure communication {verify customer}

display portfolio

enter purchase data

request confirmation {verify funds}

confirm purchase

display order number place order

logout

insecure communication {execute order}

display good bye

report results of trade

Figure 7.5 Sequence diagram for a session with an online stock broker.
A sequence diagram shows the participants in an interaction and
the sequence of messages among them.

show conditionals within a sequence diagram, usually it is clearer to prepare one sequence
diagram for each major flow of control.

Sequence diagrams can show large-scale interactions, such as an entire session with the
stock broker system, but often such interactions contain many independent tasks that can be
combined in various ways. Rather than repeating information, you can draw a separate se-
quence diagram for each task. For example, Figure 7.6 and Figure 7.7 show an order to pur-
chase a stock and a request for a quote on a stock. These and various other tasks (not shown)
would fit within an entire stock trading session.

You should also prepare a sequence diagram for each exception condition within the use
case. For example, Figure 7.8 shows a variation in which the customer does not have suffi-
cient funds to place the order. In this example, the customer cancels the order. In another
variation (not shown), the customer would reduce the number of shares purchased and the
order would be accepted.

In most systems, there are an unlimited number of scenarios, so it is not possible to show
them all. However, you should try to elaborate all the use cases and cover the basic kinds of
behavior with sequence diagrams. For example, a stock broker system can interleave pur-
chases, sales, and inquiries arbitrarily. It is unnecessary to show all combinations of activi-
ties, once the basic pattern is established.

7.2 Sequence Models

:Customer

enter purchase data

request confirmation

confirm purchase

display order number

:StockBrokerSystem :SecuritiesExchange
{verify funds}
place order
report results of trade {execute order}

Figure 7.6 Sequence diagram for a stock purchase. Sequence diagrams can
show large-scale interactions as well as smaller, constituent tasks.

:Customer

:StockBrokerSystem

:SecuritiesExchange

enter stock symbol

display quote

request stock data

report stock data

Figure 7.7 Sequence diagram for a stock quote

:Customer

:StockBrokerSystem

:SecuritiesExchange

enter purchase data

reject purchase

{verify funds:
insufficient}

cancel purchase

Lt

Figure 7.8 Sequence diagram for a stock purchase that fails

139

140 Chapter 7 / Interaction Modeling

7.2.3 Guidelines for Sequence Models

The sequence model adds detail and elaborates the informal themes of use cases. There are
two kinds of sequence models. Scenarios document a sequence of events with prose. Se-
quence diagrams also document the sequence of events but more clearly show the actors in-
volved. The following guidelines will help you with sequence models.

B Prepare at least one scenario per use case. The steps in the scenario should be logical
commands, not individual button clicks. Later, during implementation, you can specity
the exact syntax of input. Start with the simplest mainline interaction-—no repetitions,
one main activity, and typical values for all parameters. If there are substantially differ-
ent mainline interactions, write a scenario for each.

B Abstract the scenarios into sequence diagrams. The sequence diagrams clearly show
the contribution of each actor. It is important to separate the contribution of each actor
as a prelude to organizing behavior about objects.

B Divide complex interactions. Break large interactions into their constituent tasks and
prepare a sequence diagram for each of them.

B Prepare a sequence diagram for each error condition. Show the system response to
the error condition.

7.3 Activity Models

An activity diagram shows the sequence of steps that make up a complex process, such as
an algorithm or workflow. An activity diagram shows flow of control, similar to a sequence
diagram, but focuses on operations rather than on objects. Activity diagrams are most useful
during the early stages of designing algorithms and workflows.

Figure 7.9 shows an activity diagram for the processing of a stock trade order that has
been received by an online stock broker. The elongated ovals show activities and the arrows
show their sequencing. The diamond shows a decision point and the heavy bar shows split-
ting or merging of concurrent threads.

The online stock broker first verifies the order against the customer’s account, then ex-
ecutes it with the stock exchange. If the order executes successfully. the system does three
things concurrently: mails trade confirmation to the customer. updates the online portfolio to
reflect the results of the trade. and settles the trade with the other party by debiting the ac-
count and transferring cash or sccurities. When all three concurrent threads have been com-
pleted, the system merges control into a single thread and closes the order. It the order
execution fails. then the system sends a failure notice to the customer and closes the order.

An activity diagram is like a traditional flowchart in that it shows the flow ot control
from step to step. Unlike a traditional flowchart. however. an activity diagram can show both
sequential and concurrent flow of control. This distinction is important for a distributed sys-
tem. Activity diagrams are often used for modeling human organizations because they in-
volve many objects—persons and organizational units—that perform operations
concurrently.

7.3 Activity Models 141
(execute order

[failure]

[success]

{ debit account update online send
S E— portfolio failure notice
settle trade

|

send
confirmation

@é—@order F=
—

Figure 7.9 Activity diagram for stock trade processing. An activity diagram
shows the sequence of steps that make up a complex process.

7.3.1 Activities

The steps of an activity diagram are operations, specifically activities from the state model.
The purpose of an activity diagram is to show the steps within a complex process and the
sequencing constraints among them.

Some activities run forever until an outside event interrupts them, but most activities
eventually complete their work and terminate by themselves. The completion of an activity
is a completion event and usually indicates that the next activity can be started. An unlabeled
arrow from one activity to another in an activity diagram indicates that the first activity must
complete before the second activity can begin.

An activity may be decomposed into finer activities. For example, Figure 7.10 expands
the execute order activity of Figure 7.9. It is important that the activities on a diagram be at
the same level of detail. For example. in Figure 7.9 execute order and settle trade are similar
in detail: they both express a high-level operation without showing the underlying mecha-
nisms. If one of these activities were replaced in the activity diagram by its more detailed
steps, the other activities should be replaced as well to maintain balance. Alternatively, bal-
ance can be preserved by elaborating the activities in separate diagrams.

142 Chapter 7 / Interaction Modeling

[market order]

[timeout]
[selling] [buying] [limit order] |__[order still active]

[price not available]

find seller
at market price
, [price available]

é [selling]) [buying]

find buyer
at market price

! LN
find seller at limit
price or better

find buyer at limit)
rice or better
P better

Figure 7.10 Activity diagram for execute order. An activity may be de-
composed into finer activities.

7.3.2 Branches

If there is more than one successor to an activity, each arrow may be labeled with a condition
in square brackets, for example, [failure]. All subsequent conditions are tested when an ac-
tivity completes. If one condition is satisfied, its arrow indicates the next activity to perform.
If no condition is satisfied, the diagram is badly formed and the system will hang unless it is
interrupted at some higher level. To avoid this danger, you can use the else condition; it is
satisfied in case no other condition is satisfied. If multiple conditions are satisfied, only one
successor activity executes, but there is no guarantee which one it will be. Sometimes this
kind of nondeterminism is desirable, but often it indicates an error, so the modeler should
determine whether any overlap of conditions can occur and whether it is correct.

As a notational convenience, a diamond shows a branch into multiple successors, but it
means the same thing as arrows leaving an activity symbol directly. In Figure 7.9 the dia-
mond has one incoming arrow and two outgoing arrows, each with a condition. A particular
execution chooses only one path of control.

If several arrows enter an activity, the alternate execution paths merge. Alternatively,
several arrows may enter a diamond and one may exit to indicate a merge.

7.3.3 Initiation and Termination

A solid circle with an outgoing arrow shows the starting point of an activity diagram. When
an activity diagram is activated, control starts at the solid circle and proceeds via the outgoing

7.3 Activity Models 143

arrow toward the first activities. A bull’s-eye (a solid circle surrounded by a hollow circle)
shows the termination point—this symbol only has incoming arrows. When control reaches
a bull’s-eye, the overall activity is complete and execution of the activity diagram ends.

7.3.4 Concurrent Activities

Unlike traditional flow charts, organizations and computer systems can perform more than
one activity at a time. The pace of activity can also change over time. For example, one ac-
tivity may be followed by another activity (sequential control), then split into several con-
current activities (a fork of control), and finally be combined into a single activity (a merge
of control). A fork or merge is shown by a synchronization bar—a heavy line with one or
more input arrows and one or more output arrows. On a synchronization, control must be
present on all of the incoming activities, and control passes to all of the outgoing activities.

Figure 7.9 illustrates both a fork and merge of control. Once an order is executed, there
is a fork——several tasks need to occur and they can occur in any order. The stock trade system
must send confirmation to the customer, debit the customer’s account, and update the cus-
tomer’s online portfolio. After the three concurrent tasks complete and the trade is settled,
there is a merge, and execution proceeds to the activity of closing the order.

7.3.5 Executable Activity Diagrams

Activity diagrams are not only useful for defining the steps in a complex process, but they
can also be used to show the progression of control during execution. An activity token can
be placed on an activity symbol to indicate that it is executing. When an activity completes,
the token is removed and placed on the outgoing arrow. In the simplest case, the token then
moves to the next activity.

If there are multiple outgoing arrows with conditions, the conditions are examined to de-
termine the successor activity. Only one successor activity can receive the token, even if
more than one condition is true. If no condition is satisfied. the activity diagram is ill formed.

Multiple tokens can arise through concurrency. If an executing activity is followed by a
concurrent split of control, completion causes an increase in the number of tokens—a token
is placed on each of the concurrent activities. Similarly, a merge of control causes a decrease
in the number of tokens as tokens migrate from the input activities to the output activities.
All the input activities must complete before the merge can actually occur.

7.3.6 Guidelines for Activity Models

Activity diagrams elaborate the details of computation, thus documenting the steps needed

to implement an operation or a business process. In addition, activity diagrams can help de-

velopers understand complex computations by graphically displaying the progression
through intermediate execution steps. Here is some advice for activity models.

B Don’t misuse activity diagrams. Activity diagrams are intended to elaborate use case
and sequence models so that a developer can study algorithms and workflow. Activity
diagrams supplement the object-oriented focus of UML models and should not be used
as an excuse to develop software via flowcharts.

144 Chapter 7 / Interaction Modeling

B Level diagrams. Activities on a diagram should be at a consistent level of detail. Place
additional detail for an activity in a separate diagram.

B Be careful with branches and conditions. If there are conditions, at least one must be
satistied when an activity completes—consider using an else condition. In undetermin-
istic models, it is possible for multiple conditions to be satisfied—otherwise this is an
error condition.

B Be careful with concurrent activities. Concurrency means that the activities can com-
plete in any order and still yield an acceptable result. Before a merge can happen, all
inputs must first complete.

B Consider executable activity diagrams. Executable activity diagrams can help devel-
opers understand their systems better. Sometimes they can even be helpful for end users
who want to follow the progression of a process.

7.4 Chapter Summary

The interaction model provides a holistic view of behavior—how objects interact and ex-
change messages. At a high level, use cases partition the functionality of a system into dis-
crete pieces meaningful to external actors. You can elaborate the behavior of use cases with
scenarios and sequence diagrams. Sequence diagrams clearly show the objects in an interac-
tion and the messages among them. Activity diagrams specify the details of a computation.

The class, state, and interaction models all involve the same concepts, namely data, se-
quencing, and operations, but each model focuses on a particular aspect and leaves the other
aspects uninterpreted. All three models are necessary for a full understanding of a problem,
although the balance of importance among the models varies according to the kind of appli-
cation. The three models come together in the implementation of methods, which involve
data (target object, arguments, and variables), control (sequencing constructs), and interac-
tions (messages, calls, and sequences).

activity concurrency scenario use case

activity diagram interaction model sequence diagram use case diagram
activity token lifeline system boundary

actor message thread

Figure 7.11 Key concepts for Chapter 7

Bibliographic Notes

Jacobson first introduced use cases [Jacobson-92]. The first edition of this book included
scenarios and event trace diagrams. The latter are equivalent to simple sequence diagrams.

References 145

References

[Jacobson-92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard. Object-

Oriented Software Engineering: A Use Case Driven Approach. Wokingham, England: Addison-
Wesley, 1992.

Exercises

7.1

7.4

7.5

1.6

Consider a physical bookstore, such as in a shopping mall.

a. (2) List three actors that are involved in the design of a checkout system. Explain the rele-
vance of each actor.

b. (2) One use case is the purchase of items. Take the perspective of a customer and list another
use case at a comparable level of abstraction. Summarize the purpose of each use case with
a sentence.

c. (4) Prepare a use case diagram for a physical bookstore checkout system.

d. (3) Prepare a normal scenario for each use case. Remember that a scenario is an example,
and need not exercise all functionality of the use case.

e. (3) Prepare an exception scenario for each use case.

f. (5) Prepare a sequence diagram corresponding to each scenario in (d).

Consider a computer email system.

a. (2) List three actors. Explain the relevance of each actor.

b. (2) One use case is to get email. List four additional use cases at a comparable level of ab-
straction. Summarize the purpose of each use case with a sentence.

c. (4) Prepare a use case diagram for a computer email system.

d. (3) Prepare a normal scenario for cach use case. Remember that a scenario is an example,
and need not exercise all functionality of the use case.

e. (3) Prepare an exception scenario for each use case.

f. (5) Prepare a sequence diagram corresponding to each scenario in (d).

Consider an online airline reservation system. You may want to check airline Web sites to give

you ideas.

a. (2) List two actors. Explain the relevance of each actor.

b. (2) One use case is to make a flight reservation. List four additional use cases at a comparable
level of abstraction. Summarize the purpose of each use case with a sentence.

¢. (4) Prepare a use case diagram for an online airline reservation system.

Consider a software system for supporting checkout of materials at a public library.

a. (2) List four actors. Explain the relevance of each actor.

b. (2) One use case is to borrow a library item. List three additional use cases at a comparable
level of abstraction. Summarize the purpose of each use case with a sentence.

¢. (4) Prepare a use case diagram for a library checkout system.

(3) Identify at least 10 use cases for the Windows Explorer. Just list them textually and summa-

rize the purpose of each use case in one or two sentences.

(3) Write scenarios for the following situations:
a. Moving a bag of corn, a goose, and a fox across a river in a boat. Only one thing may be
carried in the boat at a time. If the goose is left alone with the corn, the corn will be eaten. If

146

7.7

7.8

7.9

7.10

Chapter 7 / Interaction Modeling

the goose is left alone with the fox. the goose will be eaten. Prepare two scenarios, one in
which something gets eaten and one in which everything is safely transported across the riv-
er. .

b. Getting ready to take a trip in your car. Assume an automatic transmission. Don’t forget your
seat belt and emergency brake.

¢. An elevator ride to the top floor.

d. Operation of a car cruise control. Include an encounter with slow-moving traffic that re-
quires you to disengage and then resume control.

(4) Some combined bath-showers have two faucets and a lever for controlling the flow of the
water. The lever controls whether the water flows from the shower head or directly into the tub.
When the water is first turned on, it flows directly into the tub. When the lever is pulled, a valve
closes and latches. diverting the flow of water to the shower head. To switch from shower to
bath with the water running, one must push the lever. Shutting off the water releases the lever,
so that the next time the water is turned on, it flows directly into the tub. Write a scenario for a
shower that is interrupted by a telephone call.

(4) Prepare an activity diagram for computing a restaurant bill. There should be a charge for
cach delivered item. The total amount should be subject to tax and a service charge of 18% for
groups of six of more. For smaller groups, there should be a blank entry for a gratuity according
to the customer’s discretion. Any coupons or gift certificates submitted by the customer should
be subtracted.

(4) Prepare an activity diagram for awarding trequent flyer credits. In the past, TWA awarded
a minimum of 750 miles for each flight. Gold and red card holders received a minimum of 1000
miles per flight. Gold card holders received a 25% bonus for any flight. Red card holders re-
ceived a 50% bonus for any flight.

(5) Prepare an activity diagram that elaborates the details of logging into an email system. Note
that entry of the user name and the password can occur in any order.

8

Advanced Interaction Modeling

The interaction model has several advanced features that can be helpful. You can skip this
chapter on a first reading of the book.

8.1 Use Case Relationships

Independent use cases suffice for simple applications. However, it can be helpful to structure
use cases for large applications. Complex use cases can be built from smaller pieces with the
include, extend, and generalization relationships.

8.1.1 Include Relationship

The include relationship incorporates one use case within the behavior sequence of another
use case. An included use case is like a subroutine—it represents behavior that would other-
wise have to be described repeatedly. Often the fragment is a meaningful unit of behavior for
the actors, although this is not required. The included use case may or may not be usable on
its own.

The UML notation for an include relationship is a dashed arrow from the source (includ-
ing) use case to the target (included) use case. The keyword «include» annotates the arrow.
Figure 8.1 shows an example from an online stock brokerage system. Part of establishing a
secure session is validating the user password. In addition, the stock brokerage system vali-
dates the password for each stock trade. Use cases secure session and make trade both in-
clude use case validate password.

A use case can also be inserted within a textual description with the notation include
use-case-name. An included use case is inserted at a specific location within the behavior se-
quence of the larger use case, just as a subroutine is called from a specific location within
another subroutine.

147

148 Chapter 8 / Advanced Interaction Modeling

e ——

secure session) «include»

TS
(_validate password
@trade — 7 «include»
/

Figure 8.1 Use case inclusion. The include relationship lets a base use
case incorporate behavior from another use case.

You should not use include relationships to structure fine details of behavior. The pur-
pose of use case modeling is to identify the functionality of the system and the general flow
of control among actors and the system. Factoring a use case into pieces is appropriate when
the pieces represent significant behavior units.

8.1.2 Extend Relationship

The extend relationship adds incremental behavior to a use case. It is like an include rela-
tionship looked at from the opposite direction. in which the extension adds itself to the base,
rather than the base explicitly incorporating the extension. It represents the frequent situation
in which some initial capability is defined, and later features are added modularly. The in-
clude and extend relationships both add behavior to a base use case.

For example, a stock brokerage system might have the base use case trade stocks, which
permits a customer to purchase stocks for cash on hand in the account. The extension use
case margin trading would add the ability to make a loan to purchase stocks when the ac-
count does not contain enough cash. It is still possible to buy stocks for cash, but if there is
insufficient cash, then the system ofters to proceed with the transaction after verifying that
the customer is willing to make a margin purchase. The additional behavior is inserted at the
point where the purchase cost is checked against the account balance.

Figure 8.2 shows the base use case trade stocks tor a stock brokerage system. The UML
notation for an extend relationship is a dashed arrow from the extension use case to the base
use case. The keyword «extend» annotates the arrow. The base use case permits simple pur-
chases and sales of a stock at the market price. The brokerage system adds three capabilities:
buying a stock on margin, selling a stock short, and placing a limit on the transaction price.
The use case trade options also has an extension for placing a limit on the transaction price.

The extend relationship connects an extension use case to a base use case. The extension
use case often is a fragment-—that is. it cannot appear alone as a behavior sequence. The base
use case, however, must be a valid use case in the absence of any extensions. The extend re-
lationship can specify an insert location within the behavior sequence of the base use case;
the location can be a single step in the base sequence or a range of steps. The behavior se-
quence of the extension use case occurs at the given point in the sequence. In most cases, an
extend relationship has a condition attached. The extension behavior occurs only if the con-
dition is true when control reaches the insert location.

8.1 Use Case Relationships 149

ﬁi@ trade options
«extend» _ 7~ \m/ >

«extend»
- I «extend» ~ ' «extend»
- 1 ~ I

margin trading ‘ @ @

Figure 8.2 Use case extension. The extend relationship is like an include relationship
looked at from the opposite direction. The extension adds itself to the base.

8.1.3 Generalization

Generalization can show specific variations on a general use case, analogous to generaliza-
tion among classes. A parent use case represents a general behavior sequence. Child use cas-
es specialize the parent by inserting additional steps or by refining steps. The UML indicates
generalization by an arrow with its tail on the child use case and a triangular arrowhead on
the parent use case, the same notation that is used for classes.

For example. an online stock brokerage system (Figure 8.3) might specialize the general
use case make trade into the child use cases trade bonds, trade stocks, and trade options. The
parent use case contains steps that are performed for any kind of trade, such as entering the
trading password. Each child use case contains the additional steps particular to a specific
kind of trade, such as entering the expiration date of an option.

ﬂ@ke trade

Figure 8.3 Use case generalization. A parent use case has common behavior and
child use cases add variations, analogous to generalization among classes.

A parent use case may be abstract or concrete—an abstract use case cannot be used di-
rectly. As with the class model, we recommend that you consider only abstract parents and
forego concrete ones. Then a model is more symmetric and a parent use case is not cluttered
with the handling of special cases. Use cases also exhibit polymorphism—a child use case
can freely substitute for a parent use case, for example, as an inclusion in another use case.
In all these respects, generalization is the same for use cases and for classes.

In one respect, use case generalization is more complicated than class generalization. A
subclass adds attributes to the parent class. but their order is unimportant. A child use case
adds behavior steps, but they must appear in the proper locations within the behavior se-

150 Chapter 8 / Advanced Interaction Modeling

quence of the parent. This is similar to overriding a method that is inherited by a subclass, in
which new statements may be inserted at various locations in the parent’s method. The sim-
plest approach is to simply list the entire behavior sequence of the child use case, including
the steps inherited from the parent. A more general approach is to assign symbolic locations
within the parent’s sequence and to indicate where additions and replacements go. In general,
a child may revise behavior subsequences at several different points in the parent’s sequence.

With classes there can be multiple inheritance, but we do not allow such complexity with
use cases. In practice, the include and extend relationships obviate the need for multiple in-
heritance with use cases.

8.1.4 Combinations of Use Case Relationships

A single diagram may combine several kinds of use case relationships. Figure 8.4 shows a
use case diagram from a stock brokerage system. The secure session use case includes the
behavior of the validate password, make trade, and manage account use cases. Make trade
is an abstract parent with the children—trade bonds, trade stocks, and trade options. Use
case make trade also includes the behavior of validate pussword. The brokerage system val-
idates the password once per session and additionally for every trade.

The use case margin trading extends both trade bonds and trade stocks—a customer
may purchase stocks and bonds on margin, but not options. Use case limit order extends ab-
stract use case make trade—Ilimit orders apply to trading bonds, stocks, and options. We as-
sume that a short sale is only permitted for stocks and not for bonds or options.

Note that the Customer actor connects only to the secure session use case. The broker-
age system invokes all the other use cases indirectly by inclusion, specialization, or exten-
sion. The Securities exchange actor connects to the make trade use case. This actor does not
initiate a use case but it is invoked during execution.

8.1.5 Guidelines for Use Case Relationships

Don’t carry use case relationships to extremes and lapse into programming. Use cases are
intended to clarify requirements. There can be many ways to implement requirements and
you should not commit to an approach before you fully understand a problem. Here are some
additional guidelines.

M Use case generalization. If a use case comes in several variations, model the common
behavior with an abstract use case and then specialize each of the variations. Do not use
generalization simply to share a behavior fragment; use the include relationship for that
purpose.

B Use case inclusion. If a use case includes a well-defined behavior fragment that is likely
to be useful in other situations, define a use case for the behavior fragment and include
it in the original use case. In most cases, you should think of the included use case as a
meaningful activity but not as an end in itself. For example, validating a password is
meaningful to users but has a purpose only within a broader context.

8.1 Use Case Relationships 151

Securities
Customer exchange
Stock Brokerage System
secure session
y ~
. o | .
«include» «include» N «include»
/ | AN
g v)
- «include» N
manage account make trade) — — — = (validate password
~
~
~

~
«extend»
trade opti@

trade stocks

«extend» | «extend»

, «extend»
I

! -
margin trading G@

Figure 8.4 Use case relationships. A single use case diagram may combine
several kinds of relationships.

B Use case extension. If you can define a meaningful use case with optional features, then
model the base behavior as a use case and add features with the extend relationship. This
permits the system to be tested and debugged without the extensions, which can be add-
ed later. Use the extend relationship when a system might be deployed in ditferent con-
figurations, some with the additional features and some without them.

B Include relationship vs. extend relationship. The include relationship and the extend
relationship can both factor behavior into smaller pieces. The include relationship, how-
ever, implies that the included behavior is a necessary part of a configured system (even
if the behavior is not executed every time), whereas the extend relationship implies that
a system without the added behavior would be meaningful (even if there is no intention
to configure it that way).

152 Chapter 8 / Advanced Interaction Modeling

8.2 Procedural Sequence Models

In Chapter 7, we saw sequence diagrams containing independent objects, all of which are
active concurrently. An object remains active after sending a message and can respond (o
other messages without waiting for a response. This is appropriate for high-level models.
However, most implementations are procedural and limit the number of objects that can ex-
ecute at a time. The UML has elaborations for sequence diagrams to show procedure calls.

8.2.1 Sequence Diagrams with Passive Objects

With procedural code all objects are not constantly active. Most objects are passive and do
not have their own threads of control. A passive object is not activated until it has been called.
Once the execution of an operation completes and control returns to the caller, the passive
object becomes inactive.

Figure 8.5 computes the commission for a stock brokerage transaction. The transaction
object receives a request to compute its commission. It obtains the customer’s service level
trom the customer table, then asks the rate table to compute the commission based on the
service level, after which it returns the commission value to the caller.

:Transaction :CustomerTable :RateTable

I
compute |
commission ()

: ™ l

service level (customer) |

-

|

|

|

|

I

|

. . |

calculate commnssuor] (level, transaction) |

level
. o evet
|
commission |

é.______.__l______.____.
|

commission J

- - — !

Figure 8.5 Sequence diagram with passive objects. Sequence diagrams
can show the implementation of operations.

The UML shows the period of time for an object’s execution as a thin rectangle. This is
called the activation or focus of control. An activation shows the time period during which
acall of a method is being processed, including the time when the called method has invoked
another operation. The period of time when an object exists but is not active is shown as a
dashed line. The entire period during which the object exists is called the lifeline. as it shows
the lifetime of the object.

8.2 Procedural Sequence Models 153

8.2.2 Sequence Diagrams with Transient Objects

Figure 8.6 shows further notation. ObjectA is an active object that initiates an operation. Be-
cause it is active, its activation rectangle spans the entire time shown in the diagram. ObjectB
is a passive object that exists during the entire time shown in the diagram, but it is not active
for the whole time. The UML shows its existence by the dashed line (the lifeline) that covers
the entire time period. ObjectB’s lifeline broadens into an activation rectangle when it is pro-
cessing a call. During part of the time, it performs a recursive operation. as shown by the dou-
bled activation rectangle between the call by objecrC on operationE and the return of the
result value. ObjectC is created and destroyed during the time shown on the diagram, so its
lifeline does not span the whole diagram.

objectA objectB

operationE (c, d) 1

»
-

createC (ar
(arg) »| objectC

operationE (m, n)

resultT {execute order}

_— - = = 3

<€————f—7~~—)§

resultV
< — L]

Figure 8.6 Sequence diagram with a transient object. Many applications have
a mix of active and passive objects. They create and destroy objects.

The notation for a call is an arrow from the calling activation to the activation created
by the call. The tail of the arrow is somewhere along the rectangle of the calling activation.
The arrowhead aligns with the top of the rectangle of the newly created activation, because
the call creates the activation. The filled arrowhead indicates & call (as opposed to the stick
arrowhead tor an asynchronous signal in Chapter 7).

The UML shows a return by a dashed arrow from the bottem of the called activation to
the calling activation. Not all return arrows have result values—for example, the return from
objectC to objectB. An activation, therefore, has a call arrow coming into its top and a return
arrow leaving its bottom. In between. it may have arrows to and from subordinate activations

154 Chapter 8 / Advanced Interaction Modeling

that it calls. You can suppress return arrows, because their location is implicit at the bottom
of the activation, but for clarity it is better to show them.

If an object does not exist at the beginning of a sequence diagram, then it must be created
during the sequence diagram. The UML shows creation by placing the object symbol at the
head of the arrow for the call that creates the object. For example, the createC call creates
objectC. The new object may or may not retain control after it is created. In the example,
objectC does retain control, as shown by the activation rectangle that begins immediately be-
low the object rectangle.

Similarly, a large ‘X’ marks the end of the life of an object that is destroyed during the
sequence diagram. The ‘X’ is placed at the head of the call arrow that destroys the object. If
the object destroys itself and returns control to another object, the X’ is placed at the tail of
the return arrow. In the example, objectC destroys itself and returns control to objectB. The
lifeline of the object does not extend before its creation or after its destruction.

The UML shows a call to a second method on the same object (including a recursive call
to the same method) with an arrow from the activation rectangle to the top of an additional
rectangle superimposed on the first. For example, the second call to operationE on objectB
is a recursive call nested within the first call to operationE. The second rectangle is shifted
horizontally slightly so that both rectangles can be seen. The number of superimposed rect-
angles shows the number of activations of the same object.

You can also show conditionals on a sequence diagram, but this is more complex than
we wish to include in this book. For further information, see [Rumbaugh-05].

8.2.3 Guidelines for Procedural Sequence Models

There are additional guidelines that apply to procedural sequence models beyond those men-

tioned in Chapter 7.

M Active vs. passive objects. Differentiate between active and passive objects. Most ob-
jects are passive and lack their own thread of control. By definition, active objects are
always activated and have their own focus of control.

B Advanced features. Advanced features can show the implementation of sequence dia-
grams. Be selective in using these advanced features. Only show implementation details
for difficult or especially important sequence diagrams.

8.3 Special Constructs for Activity Models

Activity diagrams have additional notation that is useful for large and complex applications.

8.3.1 Sending and Receiving Signals

Consider a workstation that is turned on. It goes through a boot sequence and then requests
that the user log in. After entry of a name and password, the workstation queries the network
to validate the user. Upon validation, the workstation then finishes its startup process. Figure
8.7 shows the corresponding activity diagram.

8.3 Special Constructs for Activity Models 155

O%ecute boot sequencb
{ accept user login)

request validation> — — — — 5
|

v

(wait for response) network

T

receive confirmation % - —

< ready)
Figure 8.7 Activity diagram with signals. Activity diagrams can show
fine control via sending and receiving events.

The UML shows the sending of a signal as a convex pentagon. When the preceding ac-
tivity completes, the signal is sent, then the next activity is started. The UML shows the re-
ceiving of a signal as a concave pentagon. When the preceding activity completes, the receipt
construct waits until the signal is received, then the next activity starts.

8.3.2 Swimlanes

In a business model, it is often useful to know which human organization is responsible for
an activity. Sales, finance. marketing, and purchasing are examples of organizations. When
the design of the system is complete, the activity will be assigned to a person, but at a high
level it is sufficient to partition the activities among organizations.

You can show such a partitioning with an activity diagram by dividing it into columns
and lines. Each column is called a swimlane by analogy to a swimming pool. Placing an ac-
tivity within a particular swimlane indicates that it is performed by a person or persons with-
in the organization. Lines across swimlane boundaries indicate interactions among different
organizations, which must usually be treated with more care than interactions within an or-
ganization. The horizontal arrangement of swimlanes has no inherent meaning, although
there may be situations in which the order has meaning.

Figure 8.8 shows a simple example for servicing an airplane. The flight attendants must
clean the trash, the ground crew must add fuel, and catering must load food and drink before
a plane is serviced and ready for its next flight.

156 Chapter 8 / Advanced Interaction Modeling

Flight attendant Ground crew Catering

e
_ load food
st)
\

B —]
s—/

Figure 8.8 Activity diagram with swimlanes. Swimlanes can show
organizational responsibility for activities.

8.3.3 Object Flows

Sometimes it is helpful to see the relationships between an operation and the objects that are
its argument values or results. An activity diagram can show objects that are inputs to or out-
puts from the activities. An input or output arrow implies a control flow, therefore it is unnec-
essary to draw a control flow arrow where there is an object flow.

Frequently the same object goes through several states during the execution of an activ-
ity diagram. The same object may be an input to or an output from several activities, but on
closer examination an activity usually produces or uses an object in a particular state. The
UML shows an object value in a particular state by placing the state name in square brackets
following the object name. If the objects have state names, the activity diagram shows both
the flow of control and the progression of an object from state to state as activities act on it.
In Figure 8.9 an airplane goes through several states as it leaves the gate, flies, and then lands
again.

:Airplane :Airplane :Airplane
[at gate] @@" [taxiing] [[in flight]
:Airplane :Airplane .

[at gate] park at gate [tafiing] (_@

Figure 8.9 Activity diagram with object flows. An activity diagram can
show the objects that are inputs or outputs of activities.

8.4 Chapter Summary 157

An activity diagram showing object flows among different object states has most of the
advantages of a data flow diagram without most of their disadvantages. In particular, it uni-
fies data flow and control flow, whereas data flow diagrams often separate them.

8.4 Chapter Summary

Independent use cases suffice for simple applications. However, it can be helpful to structure
use cases for large applications using the include, extend, and generalization relationships.
The include relationship incorporates one use case within the behavior sequence of another
use case, like a subroutine call. The extend relationship adds incremental behavior to a base
use case. Generalization can show specific variations on a general use case, analogous to
generalization among classes. Don’t use these relationships (o excess. Remember that use
cases are intended to be informal—use case relationships should only be used to structure
major behavior units.

Sequence models are not only useful for fleshing out the interactions behind use cases,
but they are also helpful for showing details of implementation. Not all objects in a sequence
model need be active and exist for the entire computation. Some objects are passive and lack
their own flow of control. Other objects are transient and may exist for only part of the du-
ration of an operation.

Activity models also have additional notation that is helpful for large and complex ap-
plications. You can show fine controls via the sending and receiving of events that may in-
teract with other objects that are not the focus of an activity diagram. You can augment
activity diagrams with swimlanes to show the organizations that are responsible for different
activities. And you can show the evolution of states of an object and how the states interleave
with the flow of activities.

activation passive object use case extension
activity diagram sequence diagram use case generalization
focus of control swimlane use case inclusion
interaction model transient object

lifeline use case

Figure 8.10 Key concepts for Chapter 8

References

[Rumbaugh-05] James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling Language Ref-
erence Manual, Second Edition. Boston: Addison-Wesley, 2005.

158 Chapter 8 / Advanced Interaction Modeling

Exercises

8.1 Consider the purchase of gasoline from an electronic gasoline pump.

a. (4) Prepare a use case diagram. Normally the customer pays cash for a gas purchase. Add
extend relationships to handle the incremental behavior of paying by credit card outside or
paying by credit card inside. Add an include relationship to represent the optional purchase
of a car wash.

b. (2) List and explain the relevance of each actor.

¢. (2) Summarize the purpose of each use case with a sentence.

8.2 (5) You are interacting with an online travel agent and encounter the following use cases. Pre-
pare a use case diagram, using the generalization and include relationships.
B Purchase a flight. Reserve a flight and provide payment and address information.
B Provide payment information. Provide a credit card to pay for the incurred charges.
B Provide address. Provide mailing and residence addresses.
B Purchase car rental. Reserve a rental car and provide payment and address information.
B Purchase a hotel stay. Reserve a hotel room and provide payment and address information.
B Make a purchase. Make a travel purchase and provide payment and address information.

8.3 (7) Consider an online frequent flyer program. Some use cases are listed below. Prepare a use
case diagram and include the appropriate relationships for the use cases. You can add an abstract
parent for each use case generalization.

View credits. View the frequent flyer points currently available in the account.

Submit missing credit. Request credit for an activity that was not credited.

Change address. Submit a new mailing address.

Change user name. Change the user name for the account.

Change password. Change the password for the account.

Book a free flight. Use frequent flyer credits to obtain a free flight.

Book a free hotel. Use frequent flyer credits to obtain a free hotel.

Book a free rental car. Use frequent flyer credits to obtain a free rental car.

Request a frequent flyer credit card. Fill out an application for a credit card that gives fre-
quent flyer points as a bonus for purchases.

M Check prices and routes. Find possible routings and corresponding prices for a paid flight.
B Check availability for a free flight. Check availability of free travel for a specified flight.

8.4 (8) Consider software that manages electronic music files. Some use cases are listed below. Pre-
pare a use case diagram and include the appropriate relationships for the use cases. You can add
an abstract parent for each use case generalization.

B Play a song. Add the song to the end of the play queue.

B Play a library. Add the songs in the library to the play queue.

B Randomize order. Randomly reorder the songs in the play queue.

H Delete a song. Delete a song from a music library.

B Destroy a song. Delete a song from all music libraries and delete the underlying file.
B Add a song. Add a music file to a music library.

Exercises 159

8.5

8.6

Create a music library. Create a new music library that contains no songs.

Delete a music library. Delete the music library.

Destroy a music library. Destroy all songs in the music library and then delete the music
library.

Rip a CD. Digitize the music on an analog CD.

Create a CD. Burn an analog CD from a list of digital songs.

View songs by title. Display the songs in a music library sorted by title.

View songs by artist. Display the songs in a music library sorted by artist.

View songs by album. Display the songs in a music library sorted by album.

View songs by genre. Display the songs in a music library sorted by genre.

Start play. Start playing songs from the queue. If previously stopped, resume playing from
the last position, otherwise start playing at the start of the queue.

Stop play. Suspend playing of music.

(8) Consider a simple payroll system. Prepare a use case diagram and include the appropriate
relationships for the following use cases. You can add an abstract parent for each use case gen-
eralization.

Add deduction. Add another deduction type for the employee and incorporate the deduction
in subsequent paychecks.

Drop deduction. Remove the deduction type for the employee.

Sum income. Total all income for a paycheck.

Sum deductions. Total all deductions for a paycheck.

Compute net take-home pay. Compute the total income less the total deductions for a pay-
check.

Compute charitable contributions. Total all contributions to charity for a paycheck.
Compute taxes. Compute all taxes paid for a paycheck.

Compute retirement savings. Compute all contributions to retirement funds for a pay-
check.

Compute other deductions. Compute the total of all deductions, other than charity, taxes.
and retirement for a paycheck.

Change employee name. Change the name of the employee that is on record.

Change employee address. Change the mailing address of the employee that is on record.
Compute base pay. Compute the base pay of the employce for the paycheck.

Compute overtime pay. Compute the overtime pay of the employee for the paycheck.
Compute other pay. Compute all other income (other than base pay and overtime) of the
employee for the paycheck.

Change method of payment. Change the method of disbursing the paycheck, such as cash,
direct deposit, and check.

(4) Consider stock management software that records all transactions that occur for a portfolio.
For example, stocks may be purchased and sold. Dividend payments may be received. Complex
situations can occur, such as stock splits.

The current contents of a portfolio can be determined by replaying the transaction log. The

portfolio has some initial contents, and all subsequent changes are captured via the transaction

160

8.7

8.8

8.9

8.10

Chapter 8 / Advanced Interaction Modeling

log. The changes in the transaction log are then applied through the target date to determine the
current contents.

Construct a procedural sequence diagram to show the calculation of the contents of a port-
folio as of some date. Limit the detail in your diagram to four message flows.

(5) Compute the value of a stock portfolio as of a specified date. First compute the contents of
the portfolio (the previous exercise) and then multiply the quantity of each stock by its value on
the specified date to determine the overall value of the portfolio.

(7) Once again compute the value of a stock portfolio as of a specified date. However, for this
exercise a portfolio may contain stock and lesser portfolios. For simplicity, assume that a port-
folio is at most three levels deep.

For example, portfolio net worth may contain portfolios retirement funds and taxable ac-
count. Portfolios retirement funds and taxable account contain only stocks.

(6) A customer decides to upgrade her PC and purchase a DVD player. She begins by calling
the sales department of the PC vendor and they tell her to talk to customer support. She then
calls customer support and they put her on hold while talking to engineering. Finally, customer
support tells the customer about several supported DVD options. The customer chooses a DVD
and it is shipped by the mail department. The customer receives the DVD, installs it satisfacto-
rily, and then mails her payment to accounting.

Construct an activity diagram for this process. Use swimlanes to show the various interac-
tions.

(6) A company is manufacturing a new product and must coordinate several departments. The
product starts out as a raw marketing idea that goes to engineering. Engineering simulates the
function of the product and prepares a design. Manufacturing reviews the design and adjusts it
to conform to existing machinery. Engineering approves the revisions and customer service
then looks at the design—a good design must enable ready repair. Engineering approves the
customer service proposals and ensures that the resulting design still meets the target function-
ality.

Construct an activity diagram for this process. Use swimlanes to show the various interac-
tions. Show the changes in the state of the design as the activity diagram proceeds.

9

Concepts Summary

We find it useful to model a system from three related but different viewpoints: the class
model, describing the objects in the system and their relationships; the state model, describ-
ing the life history of objects; and the interaction model, describing the interactions among
objects. A complete description requires all three models, but different problems place dif-
ferent emphasis. Each model applies during all stages of development and acquires detail as
development progresses.

9.1 Class Model

The class model describes the static structure of objects in a system-—their identity, their re-
lationships to other objects, their attributes, and their operations. The class model provides
the essential framework into which the state and interaction models can be placed. Changes
and interactions are meaningless unless there is something to be changed or with which to
interact. Objects are the units into which we divide the world, the molecules of our models.

The most important concepts in class models are classes, associations, and generaliza-
tions. A class describes a group of similar objects. An association describes a group of sim-
ilar connections between objects. Generalization structures the description of objects by
organizing classes by their similarities and differences. Attributes and operations are second-
ary and serve to elaborate the fundamental structure provided by classes, associations, and
generalizations.

9.2 State Model

The state model describes those aspects of an object concerned with time—events that mark
changes and states that define the context for events. Events represent external stimuli and
states represent values of objects. Over time, the objects stimulate each other, resulting in a

161

162 Chapter 9 / Concepts Summary

series of changes to their states. The state model consists of multiple state diagrams, one state
diagram for each class with important temporal behavior. The state diagrams must match on
their interfaces—events and guard conditions. Each state diagram shows the state and event
sequences permitted for one class of objects.

A state diagram specifies the possible states, which transitions are allowed between
states, what stimuli cause the transitions to occur, and what operations are executed in
response to stimuli. A state diagram describes the collective behavior for the objects in a
class. As each object has its own values and links, so too each object has its own state or po-
sition in the state diagram.

9.3 Interaction Model

The interaction model describes how objects collaborate to achieve results. It is a holistic
view of behavior across many objects, whereas the state model is a reductionist view of be-
havior that examines each object individually. Both the state model and the interaction model
are needed to describe behavior fully. They complement each other by viewing behavior
from two difterent perspectives.

Interactions can be modeled at different levels of abstraction. At a high level, use cases
describe how a system interacts with outside actors. Use cases represent pieces of function-
ality and are helpful for capturing informal requirements. Sequence diagrams provide more
detail and show the objects that interact and the time sequence of their interactions. Activity
diagrams provide the finest detail and show the flow of control among the processing steps
of a computation.

9.4 Relationship Among the Models

The class, state, and interaction models all involve the same concepts—data, sequencing,
and operations—but each model focuses on a particular aspect and leaves the other aspects
uninterpreted. All three models are necessary for a full understanding of a problem, although
the balance of importance among the models varies according to the kind of application. The
three models come together in the implementation of methods, which involve data (target ob-
Ject, arguments, and variables), control (sequencing constructs), and interactions (messages
and calls).

Each model describes one aspect of the system but contains references to the other mod-
els. The class model describes data structure on which the state and interaction models op-
erate. The operations in the class model correspond to events, conditions, and activities. The
state model describes the control structure of objects. It shows decisions that depend on ob-
ject values; the decisions cause changes in object values and subsequent states. The interac-
tion model focuses on the exchanges between objects and provides a holistic overview of the
operation of a system.

Generalization and aggregation are relationships that cut across the models. and we will
now examine their usage.

9.4 Relationship Among the Models 163

9.4.1 Generalization

Generalization appears in all three models. Generalization is the “or-relationship™ and can
show specific variations on a general situation. In UML 2.0, inheritance applies to classifiers,
and classes, signals, and use cases are all classifiers.

W Class generalization. Generalization organizes classes by their similarities and differ-
ences. A subclass inherits the attributes, operations, associations, and state diagrams of
its superclasses. Subclasses can reuse inherited properties from a superclass or override
them; subclasses can add new properties.

A subclass inherits the state diagrams of its ancestors, to be concurrent with any
state diagram that it defines. A subclass inherits both the states of its ancestors and the
transitions. To avoid confusion, subclass state diagrams should normally be an orthog-
onal addition to the state diagram from the superclass.

The class model supports multiple inheritance—a class may inherit from more than
one superclass. For simplicity, we normally disallow multiple inheritance for signals
and use cases.

B Signal generalization. A generalization hierarchy can also organize signals with inher-
itance of signal attributes. Ultimately you can regard every actual signal as a leaf on a
generalization tree of signals. An input signal triggers transitions on any ancestor signal
type.

B Use case generalization. Generalization also applies to use cases. A parent use case
represents a general behavior sequence. Child use cases specialize the parent by insert-
ing additional steps or by refining steps. In one respect, use case generalization is more
complicated than class generalization. A subclass adds attributes to the parent class, but
their order is unimportant. A child use case adds behavior steps, but they must appear
in the proper locations within the behavior sequence of the parent.

With inheritance a parent classifier may be abstract or concrete. However, we recommend

that you consider only abstract parents and forego concrete ones. Then abstract and concrete

classifiers are readily apparent at a glance; all superclassifiers arc abstract and all leaf sub-
classifiers are concrete. Classifiers also exhibit polymorphism—a child classifier can freely
substitute for a parent classifier.

The first edition of this book also supported inheritance of states, but this has been dis-
allowed in UML2 because a state is not a classifier. There are similarities between generali-
zation of classifiers and nesting of states. but strictly speaking, in UML2 there is no state
generalization.

9.4.24 Aggregation

Aggregation is the “and-relationship™ and breaks an assembly into orthogonal parts that have

limited interaction.

B Object aggregation. Aggregation is a special form of association with additional prop-
erties, most notably transitivity and antisymmetry. The UML has two forms of object
aggregation: a general form called aggregation (a constituent part is reusable and may

164 Chapter 9 / Concepts Summary

exist apart from an assembly) and a more restrictive form called composition (the con-
stituent part can belong to at most one assembly and has a coincident lifetime).

A state diagram for an assembly is a collection of state diagrams, one for each part.
The aggregate state corresponds to the combined states of all the parts. The aggregate
state is one state from the first diagram, and a state from the second diagram, and a state
from each other diagram. In the more interesting cases, the part states interact.

B State aggregation. Some states can be partitioned into lesser states, each operating in-
dependently and each having its own subdiagram. The state of the object comprises one
state from each subdiagram.

This completes our treatment of concepts and notation for object-oriented modeling.

Part 2
Analysis and Design

Chapter 10 Process Overview 167
Chapter 11 System Conception 173
Chapter 12 Domain Analysis 181
Chapter 13 Application Analysis 216
Chapter 14 System Design 240
Chapter 15 Class Design 270
Chapter 16 Process Summary 298

Part 1 covers concepts, specifically the concepts and notation for the class, state, and inter-
action models. We now shift our focus in Parts 2 and 3 and present a process for devising the
models. Part 1 discusses what constitutes a model; Parts 2 and 3 explain how to formulate a
model. Our treatment of process is language independent and applies equally well to OO lan-
guages, non-OO languages, and databases.

Chapter 10 provides an overview of the process for building models and emphasizes that
development is normally iterative and seldom a rigid sequence of steps. '

Chapter 11 presents the first stage of development—system conception—during which
a visionary conceives an application and sells the idea to an organization.

Once you have a concept for an application, you elaborate and refine the concept by
building models as Chapters 12 and 13 explain. First build a domain model that focuses on
the real-world things that carry the semantics of the application. Then build an application
model that addresses the computer aspects of the application that are visible to users.

The analysis models give you a thorough understanding of an application. The next
stage is to address the practicalities of realizing the models. Chapter 14 covers system de-
sign, in which you devise a high-level strategy for building a solution. Chapter 15 covers
class design, in which you flesh out the details for classes, associations, and operations.

Chapter 16 concludes Part 2 by summarizing the analysis and design portion of the de-
velopment process.

After reading Part 2, you will understand the basics of how to prepare OO models. You
will not be an expert, but you will have a good start on learning a valuable software devel-
opment skill. You will be ready to study implementation and software engineering in the final
two parts.

165

10

Process Overview

A software development process provides a basis for the organized production of software,
using a collection of predefined techniques and notations. The process in this book starts
with formulation of the problem, then continues through analysis, design, and implementa-
tion. The presentation of the stages is linear. but the actual process is seldom linear.

10.1 Development Stages

Software development has a sequence of well-defined stages, each with a distinct purpose,
input, and output.

System conception. Conceive an application and formulate tentative requirements.

Analysis. Deeply understand the requirements by constructing models. The goal of
analysis is to specify what needs to be done, not how it is done. You must understand a
problem before attempting a solution.

System design. Devise a high-level strategy-—the architecture—for solving the appli-
cation problem. Establish policies to guide the subsequent class design.

Class design. Augment and adjust the real-world models from analysis so that they are
amenable to computer implementation. Determine algorithms for realizing the operations.

Implementation. Translate the design into programming code and database structures.

Testing. Ensure that the application is suitable for actual use and that it truly satisfies
the requirements.

Training. Help users master the new application.

Deployment. Place the application in the field and gracefully cut over from legacy ap-
plications.

Maintenance. Preserve the long-term viability of the application.

167

168 Chapter 10 / Process Overview

The entire process is seamless. You continually elaborate and optimize models as your focus
shifts from analysis to design to implementation. Throughout development the same con-
cepts and notation apply; the only difference is the shift in perspective from the initial em-
phasis on business needs to the later emphasis on computer resources.

An OO approach moves much of the software development effort up to analysis and de-
sign. It is sometimes disconcerting to spend more time during analysis and design, but this
extra effort is more than compensated by faster and simpler implementation. Because the re-
sulting design is cleaner and more adaptable, future changes are much easier.

Part 2 covers the first four topics and Part 3 covers implementation. In this book we em-
phasize development and only briefly consider testing, training, deployment, and mainte-
nance. These last four topics are important, but are not the focus of this book.

10.1.1 System Conception

System conception deals with the genesis of an application. Initially somebody thinks of an
idea for an application, prepares a business case, and sells the idea to the organization. The
innovator must understand both business needs and technological capabilities.

10.1.2 Analysis

Analysis focuses on creation of models. Analysts capture and scrutinize requirements by
constructing models. They specify what must be done, not how it should be done. Analysis
is a difficult task in its own right, and developers must fully understand the problem before
addressing the additional complexities of design. Sound models are a prerequisite for an ex-
tensible, efficient, reliable, and correct application. No amount of implementation patches
can repair an incoherent application and compensate for a lack of forethought.

During analysis, developers consider the available sources of information (documents,
business interviews, related applications) and resolve ambiguities. Often business experts are
not sure of the precise requirements and must refine them in tandem with software develop-
ment. Modeling quickens the convergence between developers and business experts, because
it is much faster to work with multiple iterations of models than with multiple implementa-
tions of code. Models highlight omissions and inconsistencies so that they can be resolved.
As developers elaborate and refine a model, it gradually becomes coherent.

There are two substages of analysis: domain analysis and application analysis. Domain
analysis focuses on real-world things whose semantics the application captures. For exam-
ple, an airplane flight is a real-world object that a flight reservation system must represent.
Domain objects exist independently of any application and are meaningful to business ex-
perts. You find them during domain analysis or by prior knowledge. Domain objects carry
information about real-world objects and are generally passive—domain analysis emphasiz-
es concepts and relationships, with much of the functionality being implicit in the class mod-
el. The job of constructing a domain model is mainly to decide which information to capture
and how to represent it.

Domain analysis is then followed by application analysis that addresses the computer
aspects of the application that are visible to users. For example, a flight reservation screen is

10.1 Development Stages 169

part of a flight reservation system. Application objects do not exist in the problem domain
and are meaningful only in the context of an application. Application objects, however, are
not merely internal design decisions, because the users see them and must agree with them.
The application model does not prescribe the implementation of the application. It describes
how the application appears from the outside-—the black-box view of it. You cannot find ap-
plication classes with domain analysis, but you can often reuse them from previous applica-
tions. Otherwise, you must devise application objects during analysis as you think about
interfaces with other systems and how your application interacts with users.

10.1.3 System Design

During system design, the developer makes strategic decisions with broad consequences.
You must formulate an architecture and choose global strategies and policies to guide the
subsequent, more detailed portion of design. The architecture is the high-level plan or strat-
egy for solving the application problem. The choice of architecture is based on the require-
ments as well as past experience. If possible. the architecture should include an executable
skeleton that can be tested. The system designer must understand how a new system interacts
with other systems. The architecture must also support future modification of the applica-
tion.

For straightforward problems, preparation of the architecture follows analysis. Howev-
er, for large and complex problems their preparation must be interleaved. The architecture
helps to establish a model’s scope. In turn, modeling reveals important issues of strategy to
resolve. For large and complex problems, there is much interplay between the construction
of a model and the model’s architecture, and they must be built together.

10.1.4 Class Design

During class design, the developer expands and optimizes analysis models; there is a shift
in emphasis from application concepts toward computer concepts. Developers choose algo-
rithms to implement major system functions, but they should continue to defer the idiosyn-
crasies of particular programming languages.

10.1.5 Implementation

Implementation is the stage for writing the actual code. Developers map design elements to
programming language and database code. Often, tools can generate some of the code from
the design model.

10.1.6 Testing

After implementation, the system is complete, but it must be carefully tested before being
commissioned for actual use. The ideas that inspired the original project should have been
nurtured through the previous stages by the use of models. Testers once again revisit the orig-
inal business requirements and verify that the system delivers the proper functionality. Test-
ing can also uncover accidental errors (bugs) that have been introduced. If an application
runs on multiple hardware and operating system platforms, it should be tested on all of them.

170 Chapter 10 / Process Overview

Developers should check a program at several levels. Unit tests exercise small portions
of code, such as methods or possibly entire classes. Unit tests discover local problems and
often require that extra instrumentation be built into the code. System tests exercise a major
subsystem or the entire application. In contrast to unit tests, system tests can discover broad
failures to meet specifications. Both unit and system tests are necessary. Testing should not
wait until the entire application is coded. It must be planned from the beginning, and many
tests can be performed during implementation.

10.1.7 Training

An organization must train users so that they can fully benefit from an application. Training
accelerates users on the software learning curve. A separate team should prepare user docu-
mentation in parallel to the development effort. Quality control can then check the software
against the user documentation to ensure that the software meets its original goals.

10.1.8 Deployment

The eventual system must work in the field, on various platforms and in various configura-
tions. Unexpected interactions can occur when a system is deployed in a customer environ-
ment. Developers must tune the system under various loads and write scripts and install
procedures. Some customers will require software customizations. Staff must also localize
the product to different spoken languages and locales. The result is a usable product release.

10.1.9 Maintenance
Once development is complete and a system has been deployed, it must be maintained for con-
tinued success. There are several kinds of maintenance. Bugs that remain in the original system
will gradually appear during use and must be fixed. A successful application will also lead to
enhancement requests and a long-lived application will occasionally have to be restructured.
Models ease maintenance and transitions across staff changes. A model expresses the
business intent for an application that has been driven into the programming code, user in-
terface, and database structure.

10.2 Development Life Cycle

An OO approach to software development supports multiple life-cycle styles. You can use a
waterfall approach performing the phases of analysis, design, and implementation in strict
sequence for the entire system. However, we typically recommend an iterative development
strategy. We summarize the distinction here and elaborate in Chapter 21.

10.2.1 Waterfall Development

The waterfall approach dictates that developers perform the software development stages in
a rigid linear sequence with no backtracking. Developers first capture requirements, then
construct an analysis model, then perform a system design, then prepare a class design, fol-

10.3 Chapter Summary 171

lowed by implementation, testing, and deployment. Each stage is completed in its entirety
betore the next stage is begun.

The waterfall approach is suitable for well-understood applications with predictable
outputs from analysis and design. but such applications seldom occur. Too many organiza-
tions attempt to follow a waterfall when requirements are fluid. This leads to the familiar sit-
uation where developers complain about changing requirements, and the business complains
about inflexible software development. A waterfall approach also does not deliver a useful
system until completion. This makes it difficult to assess progress and correct a project that
has gone awry.

10.2.2 Iterative Development

lterative development is more flexible. First you develop the nucleus of a system—analyz-
ing, designing, implementing, and delivering working code. Then you grow the scope of the
system. adding properties and behavior to existing objects. as well as adding new kinds of
objects. There are multiple iterations as the system evolves to the final deliverable.

Each iteration includes a full complement of stages: analysis. design, implementation,
and testing. Unlike the strict sequence of the waterfall method, iterative development can in-
terleave the different stages and need not construct the entire system in lock step. Some parts
may be completed early, while other. less crucial parts are completed later. Each iteration ul-
timately yields an executable system that can be integrated and tested. You can accurately
gauge progress and make adjustments to your plans based on feedback from the early itera-
tions. If there is a problem. you can move backward to an earlier stage for rework.

Iterative development is the best choice for most applications because it gracefully re-
sponds to change and minimizes risk of failure. Management and business users get early
feedback about progress.

10.3 Chapter Summary

A software engineering process provides a basis for the organized production of software.
There is a sequence of well-defined stages that you can apply to each of the pieces of a sys-
tem. For example, parallel development teams might develop a database design, key algo-
rithms. and a user interface. An iterative development of software is flexible and responsive
to evolving requirements. First you prepare a nucleus of a system. and then you successively
grow its scope until you realize the final desired software.

analysis domain analysis system conception
application analysis implementation system design
architecture iterative development testing

class design lite cycle training

deployment maintenance waterfall development

Figure 10.1 Key concepts for Chapter 10

172 Chapter 10 / Process Overview

Bibliographic Notes

The class design stage is renamed from object design in the first edition of this book.

Exercises

10.1(2) It seems there is never enough time to do a job right the first time, but there is always time
to do it over. Discuss how the approach presented in this chapter overcomes this tendency of
human behavior. What kinds of errors do you make if you rush into the implementation phasc
of a software project? Compare the effort required to prevent errors with that needed to detect
and correct them.

10.2 (4) This book explains how to use OO techniques to implement programs and databases. Dis-
cuss how OO techniques could be applied in other areas, such as language design, knowledge
representation, and hardware design.

11

System Conception

System conception deals with the genesis of an application. Initially some person, who un-
derstands both business needs and technology, thinks of an idea for an application. Develop-
ers must then explore the idea to understand the needs and devise possible solutions. The
purpose of system conception is to defer details and understand the big picture—what need
does the proposed system meet, can it be developed at a reasonable cost, and will the demand
for the result justify the cost of building it?

This chapter introduces the automated teller machine (ATM) case study that threads
throughout the remainder of the book.

11.1 Devising a System Concept

Most ideas for new systems are extensions of existing ideas. For example, a human relations
department may have a database of employee benefit choices and require that a clerk enter
changes. An obvious extension is to allow employees to view and enter their own changes.
There are many issues to resolve (security, reliability, privacy, and so on), but the new idea
1s a straightforward extension of an existing concept.

Occasionally a new system is a radical departure from the past. For example, an online
auction automates the ancient idea of buyers bidding against each other for products, but the
first online auction systems were brand new software. The concept became feasible when
several enabling technologies came into place: the Internet, widespread personal computer
access, and reliable servers. The large customer base and low unit cost due to automation
changed the nature of auctions—an online auction can sell inexpensive items and still make
a profit. In addition, online systems have made the auction process concurrent and distribut-
ed.

Here are some ways to find new system concepts.

B New functionality. Add functionality to an existing system.

173

174

Chapter 11 / System Conception

Streamlining. Remove restrictions or gencralize the way a system works.
Simplification. Let ordinary persons perform tasks previously assigned to specialists.
Automation. Automate manual processes.

Integration. Combine functionality from different systems.

Analogies. Look for analogies in other problem domains and see if they have useful
ideas.

Globalization. Travel to other countries and observe their cultural and business practic-
es.

11.2 Elaborating a Concept

Most systems start as vague ideas that need more substance. A good system concept must
answer the following questions.

Who is the application for? You should clearly understand which persons and organi-
zations are stakeholders of the new system. Two of the most important kinds of stake-
holders are the financial sponsors and the end users.

The financial sponsor are important because they are paying for the new system.
They expect the project to be on schedule and within budget. You should get the finan-
cial sponsors to agree to some measure of success. You need to know when the system
is complete and meets their expectations.

The users are also stakeholders, but in another sense. The users will ultimately de-
termine the success of the new system by an increase (or decrease) in their productivity
or effectiveness. Users can help you if they are receptive and provide critical comments.
They can improve your system by telling you what is missing and what could be im-
proved. In general, users will not consider new software unless they have a compelling
interest—either personal or business. You should try to help them find a vested interest
in your project so that you can obtain their buy-in. If you cannot get their buy-in, you
should question the need for the project and reconsider doing it.

What problems will it solve? You must clearly bound the size of the effort and estab-
lish its scope. You should determine which features will be in the new system and which
will not. You must reach various kinds of users in different organizations with their own
viewpoints and political motivations. You must not only decide which features are ap-
propriate, but you must also obtain the agreement of influential persons.

Where will it be used? At this early stage, it is helpful to get a general idea of where
the new system might be used. You should determine if the new system is mission-crit-
ical software for the organization, experimental software, or a new capability that you
can deploy without disrupting the workflow. You should have a rough idea about how
the new system will complement the existing systems. It is important to know if the soft-
ware will be used locally or will be distributed via a network. For a commercial product,
you should characterize the customer base.

11.2 Elaborating a Concept 175

When is it needed? Two aspects of time are important. The first is the feasible time, the
time in which the system can be developed within the constraints of cost and available
resources. The other is the required time, when the system is needed to meet business
goals. You must make sure that the timing expectations driven by technical feasibility
are consistent with the timing the business requires. If there is a disconnect, you must
initiate a dialogue between technologists and business experts to reach a solution.

Why is it needed? You may need to prepare a business case for the new system if some-
one has not already done so. The business case contains the financial justification for
the new system, including the cost, tangible benefits, intangible benefits, risk, and aiter-
natives. You must be sure that you clearly understand the motivation for the new sys-
tem. The business case will give you insight into what stakeholders expect, roughly in-
dicate the scope, and may even provide information for seeding your models. For a com-
mercial product, you should estimate the number of units that can be sold and determine
a reasonable selling price; the revenue must cover costs and a profit.

How will it work? You should brainstorm about the feasibility of the problem. For large
systems you should consider the merits of different architectures. The purpose of this
speculation is not to choose a solution, but to increase confidence that the problem can
be solved reasonably. You might need some prototyping and experimentation.

11.2.1 The ATM Case Study

Figure 11.1 lists our original system concept for an Automated Teller Machine (ATM). We
ask high-level questions to elaborate the initial concept.

Develop software so that customers can access a bank’s computers and carry out their own
financial transactions without the mediation of a bank employee.

Figure 11.1 System concept for an automated teller machine

Who is the application for? A number of companies provide ATM products. Conse-
quently. only a vendor or a large financial company could possibly justify the cost and
etfort of building ATM software.

A vendor would be competing for customers in an established market. A large ven-
dor could certainly enter such a market, but might find it advantageous to partner with
or acquire an existing supplier. A small vendor would need some special feature to dif-
ferentiate itself from the crowd and attract attention.

It is unlikely that a financial company could justify developing ATM software just
for its own use, because it would probably be more expensive than purchasing a product.
If a financial company wanted special features, it could partner with a vendor. Or it
might decide to create a separate organization that would build the software, sell it to
the sponsoring company, and then market it to others.

176 Chapter 11 / System Conception

For the ATM case study, we will assume that we are a vendor building the software.
We will assume that we are developing an ordinary product, since deep complexities of
the ATM problem domain are beyond the scope of this book.

B What problems will it solve? The ATM software is intended to serve both the bank and
the customer. For the bank, ATM software increases automation and reduces manual
handling of routine paperwork. For the customer, the ATM is ubiquitous and always
available, handling routine transactions whenever and wherever the customer desires.
ATM software must be easy to use and convenient so that customers will use it in pref-
erence to bank tellers. It must be reliable and secure since it will be handling money.

M Where will it be used? ATM software has become essential to financial institutions.
Customers take it for granted that a bank will have an ATM machine. ATM machines
are available at many stores, sporting events, and other locations throughout the world.

B When is it needed? Any software development effort is a financial proposition. The in-
vestment in development ultimately leads to a revenue stream. From an economic per-
spective, it is desirable to minimize the investment, maximize the revenue, and realize
revenue as soon as possible. Thoughtful modeling and OO techniques are conducive to
this goal.

B Why is it needed? There are many reasons why a vendor might decide to build a soft-
ware product. If other companies are making money with similar products, there is an
economic incentive to participate. A novel product could outflank competitors and lead
to premium pricing. Businesses commission internal efforts for technology that is diffi-
cult to buy and critical to them. We have no real motivation to develop ATM software,
other than to demonstrate the techniques in this book.

B How will it work? We will adopt a three-tier architecture to separate the user interfacce
from programming logic, and programming logic from the database. In reality, the ar-
chitecture is n-tier, because there can be any number of intermediate programming lev-
els communicating with each other. We will discuss architecture further in the System
Design chapter.

11.3 Preparing a Problem Statement

Once you have fleshed out the raw idea by answering the high-level questions, you are ready
to write a requirements statement that outlines the goals and general approach of the desired
system.

Throughout development, you should distinguish among requirements, design, and im-
plementation. Requirements describe how a system behaves from the user’s point of view.
The system is considered as a black box—all we care about is its external behavior. For ex-
ample, some requirements for a car are that when you press on the accelerator pedal, the car
goes faster, and when you step on the brake, the car slows down. Design decisions are engi-
neering choices that provide the behavior specified by the requirements. For example, some
design decisions are how the internal linkages are routed, how the engine is controlled, and

11.3 Preparing a Problem Statement 177

what kinds of brake pads are on the wheels. Implementation deals with the ultimate realiza-
tion in programming code.

Frequently customers mix true requirements with design decisions. Usually this is a bad
idea. If you separate requirements from design decisions, you preserve the freedom to
change a design. Typically there are many possible ways to design a system, and you should
defer a solution until you fully understand a problem.

A system concept document may include an example implementation. The purpose of
the example is to show how the system could be implemented using current technology at a
reasonable cost, It is a “*proof of existence™ statement. However, make it clear that the sample
implementation could be done differently in the final system. The sample implementation is
merely proposed as a possibility.

For example, when the Apollo program to put a man on the rnoon in the 1960s was first
proposed, the plan was to place a rocket in earth orbit, then Jaunch a landing vehicle directly
to the moon’s surface. In the final successful program, the rocket was launched directly into
a lunar orbit, from which the lander was launched to the moon’s surface. It was not a bad thing
to make the first proposal, however, as this gave confidence that there was a feasible approach.

As Figure 11.2 shows, the problem statement should state what is to be done and not
how it is to be implemented. It should be a statement of needs. not a proposal for a system
architecture. The requestor should avoid describing system internals, as this restricts devel-
opment flexibility. Performance specifications and protocols for interaction with external
systems are legitimate requirements. Software engineering standards, such as modular con-
struction, design for testability, and provision for future extensions, are also proper.

Requirements Design Implementation
Statement m General approach W Platforms
W Problem scope m Algorithms M Hardware specs
W What is needed m Data structures ® Software libraries
W Application context | Architecture W Interface standards
M Assumptions ® Optimizations
W Performance needs m Capacity planning

Figure 11.2 Kinds of requirements. Do not make early design and implementation
decisions or you will compromise development.

A problem statement may have more or less detail. A requirement for a conventional
product, such as a payroll program or a billing system, may have considerable detail. A re-
quirement for a research effort in a new area may lack details, but presumably the research
has some objective that should be clearly stated.

Most problem statements are ambiguous, incomplete. or even inconsistent. Some re-
quirements are just plain wrong. Some requirements, although precisely stated, have un-
pleasant consequences on the system behavior or impose unreasonable implementation
costs. Some requirements do not work out as well as the requestor thought. The problem

178 Chapter 11 / System Conception

statement is just a starting point for understanding the problem, not an immutable document.
The purpose of the subsequent analysis (next chapter) is to fully understand the problem and
its implications. There is no reason to expect that a problem statement prepared without a
full analysis will be correct.

11.3.1 The ATM Case Study

Figure 11.3 shows a problem statement for an automated teller machine (ATM) network.

Cashier
Station
A
Bank
\f\ Computer
]

ATM [~

Computer

\, Account

Bank

/\// Computer
ATM

Figure 11.3 ATM network. The ATM case study threads throughout the
remainder of this book.

Account

0

Design the software to support a computerized banking network including both human cash-
iers and automatic teller machines (ATMs) to be shared by a consortium of banks. Each bank
provides its own computer to maintain its own accounts and process transactions against
them. Cashier stations are owned by individual banks and communicate directly with their
own bank’s computers. Human cashiers enter account and transaction data.

Automatic teller machines communicate with a central computer that clears transac-
tions with the appropriate banks. An automatic teller machine accepts a cash card, interacts
with the user, communicates with the central system to carry out the transaction. dispenses
cash. and prints receipts. The system requires appropriate recordkeeping and security provi-
sions. The system must handle concurrent accesses to the same account correctly.

The banks will provide their own software for their own computers; you are to design
the software for the ATMs and the network. The cost of the shared system will be appor-
tioned to the banks according to the number of customers with cash cards.

11.4 Chapter Summary

The first stage of a project is to devise a new idea. The idea can involve a new system or an
improvement to an existing system. Before investing time and money into development, it is

Exercises 179

necessary to evaluate the feasibility of the system, the difficulty and risk of developing it, the
demand for the system, and the cost-benefit ratio. This process should consider the view-
points of all the stakeholders of the system and should make the trade-offs necessary to pro-
vide a good chance of success, not just technical success. but also business success. This
process usually results in some adjustments to the original idea. When the system conception
stage is complete, write a problem statement that serves as the starting point for analysis. The
problem statement need not be complete, and it will change during development, but the
writing of the statement helps to focus the attention of the project.

business case problem statement
cost-benefit trade-off requirement
design decision stakeholder
implementation constraint system conception

Figure 11.4 Key concepts for Chapter 11

Exercises

11.1 (3) Consider a new antilock braking system for crash avoidance in an automobile. Elaborate the
following high-level questions and explain your answers.
a. Who is the application for? Who are the stakeholders? Estumate how many persons in your
country are potential customers.
b. Identify three features that should be included and three features that should be omitted.
¢. Identify three systems with which it must work.
d. What are two of the largest risks?

11.2 (3) Repeat Exercise 11.1 for software that supports Internet selling of books.
11.3 (3) Repeat Exercise 11.1 for software that supports the remodeling of kitchens.
11.4 (3) Repeat Exercise 11.1 for an online auction system.

[1.5 (4) Prepare a problem statement, similar to that for the ATM system. for each of the following
systems. You may limit the scope of the system, but be precise and avoid making implementa-
tion decisions. Use 75-150 words per specification.

a. bridge player

b. change-making machine

¢. car cruise control

d. electronic typewriter

¢. spelling checker

f. telephone answering machine

11.6 (3) Rephrase the following requirements to make them more precise. Remove any design deci-
sions posing as requirements:

a. A system to transfer data from one computer to another over a telecommunication line. The

system should transmit data reliably over noisy channels. Data must not be lost if the receiv-

180

Chapter 11/ System Conception

ing end cannot keep up or it the line drops out. Data should be transmitted in packets, using
a master-slave protocol in which the receiving end acknowledges or negatively acknowl-
edges all exchanges.

. A system for automating the production of complex machined parts. The parts will be de-

signed using a three-dimensional drafting editor that is part of the system. The system will
produce tapes that can be used by numerical control (N/C) machines to actually produce the
parts.

A desktop publishing system, based on a what-you-see-is-what-you-get philosophy. The
system will support text and graphics. Graphics include lines, squares, rectangles, polygons,
circles, and ellipses. Internally. a circle is represented as a special case of an ellipse and a
square as a special case of a rectangle. The system should support interactive, graphical ed-
iting of documents.

. A system for generating nonsense. The input is a sample document. The output is random

text that mimics the input text by imitating the frequencies of combinations of letters of the
input. The user specifies the order of the imitation and the length of the desired output. For
order N, every output sequence of N characters is found in the input and at approximately
the same frequency. As the order increases, the style of the output more closely matches the
input.

The system should generate its output with the following method: Select a position at ran-

dom in the document being imitated. Scan forward in the input text until a sequence of char-
acters is found that exactly matches the last N — | characters of the output. If you reach the
end of the input, continue scanning from the beginning. When a match is found, copy the
letter that follows the matched sequence fron: the input to the output. Repeat until the desired
amount of text is generated.
A system for distributing electronic mail over a network. Each user of the system should be
able to send mail from any computer account and receive mail on one designated account.
There should be provisions for answering or forwarding mail, as well as saving messages in
files or printing them. Also. users should be able to send messages to several other users at
once through distribution lists. Each computer on the net should hold any messages destined
for computers that are down.

